DOI QR코드

DOI QR Code

Thermal characteristics of defective carbon nanotube-polymer nanocomposites

  • Unnikrishnan, V.U. (Advanced Computational Mechanics Laboratory, Department of Mechanical Engineering, Texas A&M University) ;
  • Reddy, J.N. (Multi Phase Flows and Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University) ;
  • Banerjee, D. (Multi Phase Flows and Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University) ;
  • Rostam-Abadi, F. (U.S. Army Tank-Automotive and Armaments Command)
  • 투고 : 2008.10.10
  • 심사 : 2008.08.01
  • 발행 : 2008.12.25

초록

The interfacial thermal resistance of pristine and defective carbon nanotubes (CNTs) embedded in low-density polyethylene matrix is studied in this paper. Interface thermal resistance in nanosystems is one of the most important factors that lead to the large variation in thermal conductivities in literature and the novelty of this paper lies in the estimation of the interfacial thermal resistance for defective nanotubes-systems. Thermal properties of CNT nanostructures are estimated using molecular dynamics (MD) simulations and the simulations were carried out for various temperatures by rescaling the velocities of carbon atoms in the nanotube. This paper also deals with the mesoscale thermal conductivities of composite systems, using effective medium theories by considering the size effect in the form of interfacial thermal resistance and also using the conventional micromechanical methods like Hashin-Shtrikman bounds and Wakashima-Tsukamoto estimates.

키워드

참고문헌

  1. Belytschko, T., Xiao, S. P., Schatz, G. C. and Ruoff, R. S. (2002), "Atomistic simulations of nanotube fracture", Physical Review B, 65(23), 235430. https://doi.org/10.1103/PhysRevB.65.235430
  2. Bryning, M. B., Milkie, D. E., Islam, M. F., Kikkawa, J. M. and Yodh, A. G. (2005). "Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites", Appl. Phys. Lett., 87(16), 161909-3. https://doi.org/10.1063/1.2103398
  3. Chandra, N., Namilae, S. and Shet, C. (2004), "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects", Physical Review B (Condensed Matter and Materials Physics), 69(9), 094101-094112. https://doi.org/10.1103/PhysRevB.69.094101
  4. Clancy, T. C. and Gates, T. S. (2006), "Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites", Polymer, 47(16), 5990-5996. https://doi.org/10.1016/j.polymer.2006.05.062
  5. Dinadayalane, T. C. and Leszczynski, J. (2007), "Stone-Wales defects with two different orientations in (5, 5) single-walled carbon nanotubes: A theoretical study", Chemical Phys. Lett., 434(1-3), 86-91. https://doi.org/10.1016/j.cplett.2006.11.099
  6. Gao, L., Zhou, X. and Ding, Y. (2007), "Effective thermal and electrical conductivity of carbon nanotube composites", Chemical Physics Letters, 434(4-6), 297-300. https://doi.org/10.1016/j.cplett.2006.12.036
  7. Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Methods Appl. Mech. Eng., 193(17-20), 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025
  8. Huxtable, S. T., Cahill, D. G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M., Strano, M. S., Siddons, G., Shim, M. and Keblinski, P. (2003), "Interfacial heat flow in carbon nanotube suspensions", Nature Materi., 2(11), 731-734. https://doi.org/10.1038/nmat996
  9. Jiajun, W. and Xiao-Su, Y. (2004), "Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites", Composites Science and Technology, 64(10-11), 1623-1628. https://doi.org/10.1016/j.compscitech.2003.11.007
  10. Laborde-Lahoz, P., Maser, W., Martinez, T., Benito, A., Seeger, T., Cano, P., Villoria, R. and Miravete, A. (2005), "Mechanical characterization of carbon nanotube composite materials", Mech. Adv. Mater. Struct., 12(1), 13-19. https://doi.org/10.1080/15376490590491792
  11. Li, L. X. and Wang, T. J. (2005), "A unified approach to predict overall properties of composite materials", Materials Characterization, 54(1), 49-62. https://doi.org/10.1016/j.matchar.2004.10.005
  12. Mura, T. (1997), Micromechanics of Defects in Solids, Martinus Nijhoff, Hague, The Netherlands.
  13. Nan, C. -W., Liu, G., Lin, Y. and Li, M. (2004), "Interface effect on thermal conductivity of carbon nanotube composites", Appl. Phys. Lett., 85(16), 3549-3551. https://doi.org/10.1063/1.1808874
  14. Nan, C. W., Shi, Z. and Lin, Y. (2003), "A simple model for thermal conductivity of carbon nanotube-based composites", Chem. Phys. Lett., 375(5-6), 666-669. https://doi.org/10.1016/S0009-2614(03)00956-4
  15. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. and Skiff, W. M. (1992), "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations", J. Am. Chem. Soc., 114(25), 10024-10035. https://doi.org/10.1021/ja00051a040
  16. Shenogin, S., Xue, L., Ozisik, R., Keblinski, P. and Cahill, D. G. (2004), "Role of thermal boundary resistance on the heat flow in carbon-nanotube composites", J. Appl. Phys., 95(12), 8136-8144. https://doi.org/10.1063/1.1736328
  17. Strauss, M. T., and Pober, R. L. (2006), "Nanotubes in liquids: Effective thermal conductivity", J. Appl. Phys., 100(8), 084328-9. https://doi.org/10.1063/1.2360147
  18. Troya, D., Mielke, S. L. and Schatz, G. C. (2003), "Carbon nanotube fracture - differences between quantum mechanical mechanisms and those of empirical potentials", Chem. Phys. Lett., 382(1-2), 133-141. https://doi.org/10.1016/j.cplett.2003.10.068
  19. Tserpes, K. I. and Papanikos, P. (2007), "The effect of stone-wales defect on the tensile behavior and fracture of single-walled carbon nanotubes", Compos. Struct., 79(4), 581-589. https://doi.org/10.1016/j.compstruct.2006.02.020
  20. Unnikrishnan, V. U., Banerjee, D. and Reddy, J. N. (2008), "Atomistic-mesoscale interfacial resistance based thermal analysis of carbon nanotube systems", Int. J. Thermal Sci., 47, 1602-1609. https://doi.org/10.1016/j.ijthermalsci.2007.10.012
  21. Vandescuren, M., Amara, H., Langlet, R. and Lambin, P. (2007), "Characterization of single-walled carbon nanotubes containing defects from their local vibrational densities of states", Carbon, 45(2), 349-356. https://doi.org/10.1016/j.carbon.2006.09.018
  22. Xue, L., Keblinski, P., Phillpot, S. R., Choi, S. U. S. and Eastman, J. A. (2003), "Two regimes of thermal resistance at a liquid--solid interface", The J. Chem. Phys., 118(1), 337-339. https://doi.org/10.1063/1.1525806
  23. Xue, Q. Z. (2005), "Model for thermal conductivity of carbon nanotube-based composites", Physica B: Condensed Matter, 368(1-4), 302-307. https://doi.org/10.1016/j.physb.2005.07.024
  24. Xue, Q. Z. (2006), "Model for the effective thermal conductivity of carbon nanotube composites", Nanotechnology, 17(6), 1655-1660. https://doi.org/10.1088/0957-4484/17/6/020
  25. Yokota, H., Yamada, S. and Ibukiyama, M. (2003), "Effect of large [beta]-Si3N4 particles on the thermal conductivity of [beta]-Si3N4 ceramics", J. European Ceramic Society, 23(8), 1175-1182. https://doi.org/10.1016/S0955-2219(02)00291-1
  26. Yoshiyuki, M., Angel, R., Savas, B., Mina, Y. and David, T. (2004), "Spectroscopic characterization of Stone- Wales defects in nanotubes", Physical Review B (Condensed Matter and Materials Physics), 69(12), 121413. https://doi.org/10.1103/PhysRevB.69.121413

피인용 문헌

  1. Interfacial thermal properties and size-effect in thermo-mechanical characterisation of nanocomposites vol.4, pp.1, 2015, https://doi.org/10.1680/nme.14.00025
  2. Modeling the Role of Bulk and Surface Characteristics of Carbon Fiber on Thermal Conductance across the Carbon-Fiber/Matrix Interface vol.7, pp.48, 2015, https://doi.org/10.1021/acsami.5b08591
  3. The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams vol.2, pp.3, 2008, https://doi.org/10.12989/imm.2009.2.3.223
  4. Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes vol.4, pp.3, 2011, https://doi.org/10.12989/imm.2011.4.3.239