References
- Belytschko, T., Xiao, S. P., Schatz, G. C. and Ruoff, R. S. (2002), "Atomistic simulations of nanotube fracture", Physical Review B, 65(23), 235430. https://doi.org/10.1103/PhysRevB.65.235430
- Bryning, M. B., Milkie, D. E., Islam, M. F., Kikkawa, J. M. and Yodh, A. G. (2005). "Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites", Appl. Phys. Lett., 87(16), 161909-3. https://doi.org/10.1063/1.2103398
- Chandra, N., Namilae, S. and Shet, C. (2004), "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects", Physical Review B (Condensed Matter and Materials Physics), 69(9), 094101-094112. https://doi.org/10.1103/PhysRevB.69.094101
- Clancy, T. C. and Gates, T. S. (2006), "Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites", Polymer, 47(16), 5990-5996. https://doi.org/10.1016/j.polymer.2006.05.062
- Dinadayalane, T. C. and Leszczynski, J. (2007), "Stone-Wales defects with two different orientations in (5, 5) single-walled carbon nanotubes: A theoretical study", Chemical Phys. Lett., 434(1-3), 86-91. https://doi.org/10.1016/j.cplett.2006.11.099
- Gao, L., Zhou, X. and Ding, Y. (2007), "Effective thermal and electrical conductivity of carbon nanotube composites", Chemical Physics Letters, 434(4-6), 297-300. https://doi.org/10.1016/j.cplett.2006.12.036
- Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Methods Appl. Mech. Eng., 193(17-20), 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025
- Huxtable, S. T., Cahill, D. G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M., Strano, M. S., Siddons, G., Shim, M. and Keblinski, P. (2003), "Interfacial heat flow in carbon nanotube suspensions", Nature Materi., 2(11), 731-734. https://doi.org/10.1038/nmat996
- Jiajun, W. and Xiao-Su, Y. (2004), "Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites", Composites Science and Technology, 64(10-11), 1623-1628. https://doi.org/10.1016/j.compscitech.2003.11.007
- Laborde-Lahoz, P., Maser, W., Martinez, T., Benito, A., Seeger, T., Cano, P., Villoria, R. and Miravete, A. (2005), "Mechanical characterization of carbon nanotube composite materials", Mech. Adv. Mater. Struct., 12(1), 13-19. https://doi.org/10.1080/15376490590491792
- Li, L. X. and Wang, T. J. (2005), "A unified approach to predict overall properties of composite materials", Materials Characterization, 54(1), 49-62. https://doi.org/10.1016/j.matchar.2004.10.005
- Mura, T. (1997), Micromechanics of Defects in Solids, Martinus Nijhoff, Hague, The Netherlands.
- Nan, C. -W., Liu, G., Lin, Y. and Li, M. (2004), "Interface effect on thermal conductivity of carbon nanotube composites", Appl. Phys. Lett., 85(16), 3549-3551. https://doi.org/10.1063/1.1808874
- Nan, C. W., Shi, Z. and Lin, Y. (2003), "A simple model for thermal conductivity of carbon nanotube-based composites", Chem. Phys. Lett., 375(5-6), 666-669. https://doi.org/10.1016/S0009-2614(03)00956-4
- Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. and Skiff, W. M. (1992), "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations", J. Am. Chem. Soc., 114(25), 10024-10035. https://doi.org/10.1021/ja00051a040
- Shenogin, S., Xue, L., Ozisik, R., Keblinski, P. and Cahill, D. G. (2004), "Role of thermal boundary resistance on the heat flow in carbon-nanotube composites", J. Appl. Phys., 95(12), 8136-8144. https://doi.org/10.1063/1.1736328
- Strauss, M. T., and Pober, R. L. (2006), "Nanotubes in liquids: Effective thermal conductivity", J. Appl. Phys., 100(8), 084328-9. https://doi.org/10.1063/1.2360147
- Troya, D., Mielke, S. L. and Schatz, G. C. (2003), "Carbon nanotube fracture - differences between quantum mechanical mechanisms and those of empirical potentials", Chem. Phys. Lett., 382(1-2), 133-141. https://doi.org/10.1016/j.cplett.2003.10.068
- Tserpes, K. I. and Papanikos, P. (2007), "The effect of stone-wales defect on the tensile behavior and fracture of single-walled carbon nanotubes", Compos. Struct., 79(4), 581-589. https://doi.org/10.1016/j.compstruct.2006.02.020
- Unnikrishnan, V. U., Banerjee, D. and Reddy, J. N. (2008), "Atomistic-mesoscale interfacial resistance based thermal analysis of carbon nanotube systems", Int. J. Thermal Sci., 47, 1602-1609. https://doi.org/10.1016/j.ijthermalsci.2007.10.012
- Vandescuren, M., Amara, H., Langlet, R. and Lambin, P. (2007), "Characterization of single-walled carbon nanotubes containing defects from their local vibrational densities of states", Carbon, 45(2), 349-356. https://doi.org/10.1016/j.carbon.2006.09.018
- Xue, L., Keblinski, P., Phillpot, S. R., Choi, S. U. S. and Eastman, J. A. (2003), "Two regimes of thermal resistance at a liquid--solid interface", The J. Chem. Phys., 118(1), 337-339. https://doi.org/10.1063/1.1525806
- Xue, Q. Z. (2005), "Model for thermal conductivity of carbon nanotube-based composites", Physica B: Condensed Matter, 368(1-4), 302-307. https://doi.org/10.1016/j.physb.2005.07.024
- Xue, Q. Z. (2006), "Model for the effective thermal conductivity of carbon nanotube composites", Nanotechnology, 17(6), 1655-1660. https://doi.org/10.1088/0957-4484/17/6/020
- Yokota, H., Yamada, S. and Ibukiyama, M. (2003), "Effect of large [beta]-Si3N4 particles on the thermal conductivity of [beta]-Si3N4 ceramics", J. European Ceramic Society, 23(8), 1175-1182. https://doi.org/10.1016/S0955-2219(02)00291-1
- Yoshiyuki, M., Angel, R., Savas, B., Mina, Y. and David, T. (2004), "Spectroscopic characterization of Stone- Wales defects in nanotubes", Physical Review B (Condensed Matter and Materials Physics), 69(12), 121413. https://doi.org/10.1103/PhysRevB.69.121413
Cited by
- Interfacial thermal properties and size-effect in thermo-mechanical characterisation of nanocomposites vol.4, pp.1, 2015, https://doi.org/10.1680/nme.14.00025
- Modeling the Role of Bulk and Surface Characteristics of Carbon Fiber on Thermal Conductance across the Carbon-Fiber/Matrix Interface vol.7, pp.48, 2015, https://doi.org/10.1021/acsami.5b08591
- The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams vol.2, pp.3, 2008, https://doi.org/10.12989/imm.2009.2.3.223
- Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes vol.4, pp.3, 2011, https://doi.org/10.12989/imm.2011.4.3.239