Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Mathematics of Computation, 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Methods Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Liu, W. K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Methods Fluids, 20, 1081-1106. https://doi.org/10.1002/fld.1650200824
- Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing kernel particle methods for large deformation analysis of nonlinear structures", Comput. Methods Appl. Mech. Eng., 139, 195-227. https://doi.org/10.1016/S0045-7825(96)01083-3
- Krysl, P. and Belytschko, T. (1996), "Analysis of thin shells by the element-free Galerkin method", Int. J. Solids Struct., 33, 3057-3080. https://doi.org/10.1016/0020-7683(95)00265-0
- Li, S., Hao W. and Liu, W.K. (2000), "Numerical simulations of large deformation of thin shell structures using meshfree method", Comput. Mech., 25, 102-116. https://doi.org/10.1007/s004660050463
- Li, S. and Liu, W.K. (2004), Meshfree Particle Methods, Springer, Germany.
- Hallquist, J.O. (2003), "Current and future developments of LS-DYNA II", Proceeding of 4th European LSDYNA Users Conference, ULM, Germany, May.
- Beissel, S. and Belytschko, T. (1996), "Nodal integration of the element-free Galerkin method", Comput. Methods Appl. Mech. Eng., 139, 49-74. https://doi.org/10.1016/S0045-7825(96)01079-1
- Dyka, C.T. and Ingel, R.P. (1995), "An approach for tensile instability in smoothed particle hydrodynamics", Comput. Struct., 57, 573-580. https://doi.org/10.1016/0045-7949(95)00059-P
- Randles, P.W. and Libersky, L.D. (2000), "Normalized SPH with stress points", Int. J. Numer. Methods Eng., 48, 1445-1462. https://doi.org/10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
- Rabczuk, T., Belytschko, T. and Xiao, S.P. (2004), "Stable particle methods based on Lagrangian kernels", Comput. Methods Appl. Mech. Eng., 193, 1035-1063. https://doi.org/10.1016/j.cma.2003.12.005
- Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for Galerkin meshfree methods", Int. J Numer. Methods Eng., 50, 435-466. https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
- Chen, J.S., Yoon, S. and Wu, C.T. (2002), "Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods", Int. J. Numer. Methods Eng., 53, 2587-2615. https://doi.org/10.1002/nme.338
- Chen, J.S., Wang, D. and Dong, S.B. (2004), "An extended meshfree method for boundary value problems", Comput. Methods Appl. Mech. Eng., 193, 1085-1103. https://doi.org/10.1016/j.cma.2003.12.007
- Wang, D. and Chen, J.S. (2004), "Locking-free stabilized conforming nodal integration for meshfree Mindlin- Reissner plate formulation", Comput. Methods Appl. Mech Eng., 193, 1065-1083. https://doi.org/10.1016/j.cma.2003.12.006
- Wang, D., Dong, S.B. and Chen, J.S. (2006), "Extended meshfree analysis of transverse and inplane loading of a laminated anisotropic plate of general planform geometry", Int. J. Solids Struct., 43, 144-171. https://doi.org/10.1016/j.ijsolstr.2005.03.068
- Wang, D. and Chen, J.S. (2004), "Constrained reproducing kernel formulation for shear deformable shells", Proceeding of the 6th World Congress on Computational Mechanics, Beijing, China, September.
- Wang, D. and Chen, J.S. (2006), "A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration", Comput. Mech., 39, 83-90. https://doi.org/10.1007/s00466-005-0010-0
- Chen, J.S. and Wang, D. (2006), "A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates", Int. J. Numer. Methods Eng., 68, 151-172. https://doi.org/10.1002/nme.1701
- Wang, D. (2006), "A stabilized conforming integration procedure for Galerkin meshfree analysis of thin beam and plate", Proceeding of the 10th Enhancement and Promotion of Computational Methods in Engineering and Science (EPMESC-X), Sanya, China, August.
- Wang, D. and Chen, J.S. (2008), "A Hermite reproducing kernel approximation for thin plate analysis with sub domain stabilized conforming integration", Int. J. Numer. Methods Eng., 74, 368-390. https://doi.org/10.1002/nme.2175
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells (2nd edn), McGraw-Hill, New York.
- Simo, J.C. and Hughes, T.J.R. (1985), "On the variational foundation of assumed strain method", J. Appl. Mech., 53, 51-54.
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elements in Analysis and Design, 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- Liu, W.K., Law S.E., Lam, D. and Belytschko, T. (1986), "Resultant stress degenerated shell elements", Comput. Methods Appl. Mech. Eng., 55, 259-300. https://doi.org/10.1016/0045-7825(86)90056-3
- Koziey, B.L. and Mirza, F.A. (1997), "Consistent thick shell element", Comput. Struct., 65, 531-549. https://doi.org/10.1016/S0045-7949(96)00414-2
- Simo, J.C., Fox, D.D. and Rifai M.S. (1989), "On a stress resultant geometrical exact shell model. Part II: the linear theory; computational aspects", Comput. Methods Appl. Mech. Eng., 73, 53-92. https://doi.org/10.1016/0045-7825(89)90098-4
- Noguchi, H., Hawashima, T. and Miyamura, T. (2000), "Element free analysis of shell and spatial structures", Int. J. Numer. Methods Eng., 47, 1215-1240. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1215::AID-NME834>3.0.CO;2-M
Cited by
- Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium vol.54, pp.3, 2011, https://doi.org/10.1007/s11431-010-4287-7
- A Circumferentially Enhanced Hermite Reproducing Kernel Meshfree Method for Buckling Analysis of Kirchhoff–Love Cylindrical Shells vol.15, pp.06, 2015, https://doi.org/10.1142/S0219455414500904
- Reproducing kernel based evaluation of incompatibility tensor in field theory of plasticity vol.1, pp.4, 2008, https://doi.org/10.12989/imm.2008.1.4.423
- Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures vol.48, pp.1, 2011, https://doi.org/10.1007/s00466-011-0580-y
- A GALERKIN MESHFREE METHOD WITH STABILIZED CONFORMING NODAL INTEGRATION FOR GEOMETRICALLY NONLINEAR ANALYSIS OF SHEAR DEFORMABLE PLATES vol.08, pp.04, 2011, https://doi.org/10.1142/S0219876211002769
- A meshfree adaptive procedure for shells in the sheet metal forming applications vol.6, pp.2, 2013, https://doi.org/10.12989/imm.2013.6.2.137
- A Boundary Enhancement for the Stabilized Conforming Nodal Integration of Galerkin Meshfree Methods vol.12, pp.02, 2015, https://doi.org/10.1142/S0219876215500097
- Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration vol.46, pp.5, 2010, https://doi.org/10.1007/s00466-010-0511-3
- Concrete fragmentation modeling using coupled finite element - meshfree formulations vol.6, pp.2, 2013, https://doi.org/10.12989/imm.2013.6.2.173
- An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods vol.298, 2016, https://doi.org/10.1016/j.cma.2015.10.008
- A Moving Kriging Interpolation Meshfree Method Based on Naturally Stabilized Nodal Integration Scheme for Plate Analysis pp.1793-6969, 2018, https://doi.org/10.1142/S0219876218501001
- Improved Element-Free Galerkin method (IEFG) for solving three-dimensional elasticity problems vol.3, pp.2, 2008, https://doi.org/10.12989/imm.2010.3.2.123
- Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method vol.37, pp.5, 2008, https://doi.org/10.12989/sem.2011.37.5.529
- A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates vol.39, pp.4, 2008, https://doi.org/10.12989/sem.2011.39.4.579