References
- Beatty, M.F. and Krishnaswamy, S.A. (2000), "Theory of stress softening in incompressible isotropic elastic materials", J. Mech. Physics. Solids., 48, 1931-1965. https://doi.org/10.1016/S0022-5096(99)00085-X
- Besdo, D. and Ihlemann, J. (2003), "A phonological constitutive model for rubberlike materials and its numerical applications", Int. J. Plasticity., 19, 1019-1036. https://doi.org/10.1016/S0749-6419(02)00091-8
- Dorfmann, A. and Ogden, R.W. (2004), "A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber", Int. J. Solids. Struct., 41, 1855-1878. https://doi.org/10.1016/j.ijsolstr.2003.11.014
- Dorfmann, A. and Ogden, R.W. (2003), "A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber", Int. J. Solids. Struct., 40, 2699-2714. https://doi.org/10.1016/S0020-7683(03)00089-1
- Drozdov, A.D. and Dorfmann, A. (2001), "Stress-strain relations in finite viscoelastoplasticity of rigid-rod networks: applications to the Mullins effect", Continuum Mech. Thermodyn., 13, 183-205. https://doi.org/10.1007/s001610100049
- Gao, Y.C. (1997), "Large deformation field near a crack tip in a rubber-like material", Theoretical Appl. Fract. Mech., 26, 155-162. https://doi.org/10.1016/S0167-8442(96)00044-4
- Govindjee, S. and Simó, J.C. (1992a), "Transition from micro-mechanics to computationally efficient phenomenology: carbon black filled rubbers incorporating Mullins' effect", J. Mech. Physics Solids, 40, 213-233. https://doi.org/10.1016/0022-5096(92)90324-U
- Govindjee, S. and Simo, J.C. (1992b), "Mullins' effect and the strain amplitude dependence of the storage modulus", Int. J. Solids Struct., 29, 1737-1751. https://doi.org/10.1016/0020-7683(92)90167-R
- Guo, Z.Q. (2006), "Computrational modeling of rubber-like materials under monotonic and cyclic loading", PhD thesis, Delft University of Technology.
- Guo, Z.Q. and Sluys, L.J. (2006a), "Computational modelling of the stress-softening phenomenon of rubber-like materials under cyclic loading", European J. Mech., A/Solids, 25, 877-896. https://doi.org/10.1016/j.euromechsol.2006.05.011
- Guo, Z.Q. and Sluys, L.J. (2006b), "Application of constitutive models for description of rubber-like materials under monotonic loading", Int. J. Solids Struct., 43, 2799-2819. https://doi.org/10.1016/j.ijsolstr.2005.06.026
- Harwood, J.A.C., Mullins, L. and Payne, A.R. (1967), "Stress softening in rubbers - A review", J. Institution of the Rubber Industry, 1, 17-27.
- Krishnaswamy, S.A. and Beatty, M.F. (2000), "The Mullins effect in compressible solids", Int. J. Eng. Sci., 38, 1397-1414. https://doi.org/10.1016/S0020-7225(99)00125-1
- Lion, A. (1996) "A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation", Continuum Mech. Thermodyn., 8, 153-169. https://doi.org/10.1007/BF01181853
- Lion, A. (1997), "On the large deformation behaviour of reinforced rubber at different temperatures", J. Mech. Physics. Solids., 45, 1805-1834. https://doi.org/10.1016/S0022-5096(97)00028-8
- Miehe, C. and Keck, J (2000), "Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation", J. Mech. Physics. Solids., 48, 323-365. https://doi.org/10.1016/S0022-5096(99)00017-4
- Mullins, L. (1947), "Effect of stretching on the properties of rubber", J. Rubber Res., 16, 275-289.
- Mullins, L. and Tobin, N.R. (1957), "Theoretical model for the elastic behaviour of filler-reinforced vulcanized rubbers", Rubber Chemistry Technology, 30, 555-571. https://doi.org/10.5254/1.3542705
- Ogden, R.W. and Roxburgh, D.G. (1999), "A pseudo-elastic model for the Mullins effect in filled rubber", Proceedings of the Royal Society of London A, 2861-2877.
- Septanika, E.G. (1998), "A time-dependent constitutive model for filled and vulcanised rubbers", PhD thesis, Delft University of Technology.
- Zhong, A. (2005), "Discussion 'A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber, by A. Dorfmann and R.W. Ogden", Int. J. Solids Struct., 42, 3967-3969. https://doi.org/10.1016/j.ijsolstr.2004.12.002
Cited by
- Fatigue life prediction for radial truck tires using a global-local finite element method vol.4, pp.1, 2008, https://doi.org/10.12989/imm.2011.4.1.035
- Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes vol.4, pp.3, 2011, https://doi.org/10.12989/imm.2011.4.3.239