과제정보
연구 과제 주관 기관 : National Science Foundation
참고문헌
- Almarza, N.G. (2007), "Computation of the free energy of solids", J. Chemical Phys., 126(21), 211103. https://doi.org/10.1063/1.2746231
- Barin, I. and Knake O. (1973), Thermochemical Properties of Inorganic Substances, Springer, Berlin.
- Boggild, P., Hansen, T.M., Tanasa, C. and Grey, F. (2001), "Fabrication and actuation of customized nanotweezers with a 25 nm gap", Nanotechnology, 12, 331-335. https://doi.org/10.1088/0957-4484/12/3/322
- Chau, M., Englander, O. and Lin, L. (2003), "Nanostructure-based nanoactuator", IEEE Nano 2003, Technical Digest, 879-880, San Francisco, August.
- Frenkel, D. and Ladd, A.J.C. (1984), "New Monte Carlo method to compute the free energy of arbitrary solids. Application to the free and hcp phases of hard spheres", J. Chemical Phys., 81(7), 3188-3193. https://doi.org/10.1063/1.448024
- Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions ", Physical Review A, 31(3), 1685-1697.
- LeSar, R., Najafabadi, R. and Srolovitz, D.J. (1989), "Finite-temperature defect properties from freeenergy minimization", Physical Review Letters, 63(6), 624-627. https://doi.org/10.1103/PhysRevLett.63.624
- Li, Q., Koo, S.-M., Richter, C.A., Edelstein, M.D., Bonevich, J.E., Kopanski, J.J., Suehle, J.S. and Vogel, E.M. (2007), "Precise Alignment of single nanowires and fabrication of nanoelectromechanical switch and other test structures", Nanotechnology, IEEE Transactions, 6(2), 256-262. https://doi.org/10.1109/TNANO.2007.891827
- Lutsko, J.F., Wolf, D. and Yip, S. (1988), "Molecular dynamics calculation of free energy", J. Chemical Phys., 88(10), 6525-6528. https://doi.org/10.1063/1.454437
- Parrinello M. and Rahman, A. (1980), "Crystal structure and pair potentials: A molecular- dynamics study", Physical Review Letters, 45(14), 1196-1199. https://doi.org/10.1103/PhysRevLett.45.1196
- Plimpton, S.J. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039
- Porter, L.J., Yip, S., Yamaguchi, M., Kaburaki, H. and Tang, M. (1997), "Empirical bond-order potential description of thermodynamic properties of crystalline silicon", J. Appl. Phys., 81(1), 96-105. https://doi.org/10.1063/1.364102
- Tang, Z., Zhao, H., Li, G. and Aluru, N.R. (2006), "Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures", Physical Review B, 74(6), 064110. https://doi.org/10.1103/PhysRevB.74.064110
- Tersoff, J. (1988), "Empirical interatomic potential for silicon with improved elastic properties", Physical Review B, 38(14), 9902-9905. https://doi.org/10.1103/PhysRevB.38.9902
- Wang, C.Z., Chan, C.T., and Ho, K.M. (1990), "Tight-binding molecular dynamics study of phonon anharmonic effects in silicon and diamond", Physical Review B, 42(17), 11276-11283. https://doi.org/10.1103/PhysRevB.42.11276
- Wei, S., Li, C. and Chou, M.Y. (1994), "Ab initio calculation of thermodynamic properties of silicon", Physical Review B. 50(19), 14587-14590. https://doi.org/10.1103/PhysRevB.50.14587
- Zhao, H., Tang, Z., Li, G. and Aluru, N.R. (2006), "Quasiharmonic models for the calculation of thermodynamic properties of crystalline silicon under strain", J. Appl. Phys., 99(6), 064314. https://doi.org/10.1063/1.2185834
피인용 문헌
- Effect of shock on transition metal carbides and nitrides {MC/N (M = Zr, Nb, Ta, Ti)} vol.127, 2017, https://doi.org/10.1016/j.commatsci.2016.10.010
- Out-of-plane thermal conductivity of polycrystalline silicon nanofilm by molecular dynamics simulation vol.110, pp.5, 2011, https://doi.org/10.1063/1.3633232
- Ensemble averaging vs. time averaging in molecular dynamics simulations of thermal conductivity vol.117, pp.4, 2015, https://doi.org/10.1063/1.4906957
- Two-phase simulation of the crystalline silicon melting line at pressures from –1 to 3 GPa vol.137, pp.5, 2012, https://doi.org/10.1063/1.4739085
- Free energy calculations for molecular solids using GROMACS vol.139, pp.3, 2013, https://doi.org/10.1063/1.4812362
- Energy and force transition between atoms and continuum in quasicontinuum method vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.543
- Atomistic simulation and investigation of nanoindentation, contact pressure and nanohardness vol.1, pp.4, 2008, https://doi.org/10.12989/imm.2008.1.4.411
- The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams vol.2, pp.3, 2008, https://doi.org/10.12989/imm.2009.2.3.223
- Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites vol.4, pp.3, 2011, https://doi.org/10.12989/imm.2011.4.3.173
- Surface wettability and contact angle analysis by dissipative particle dynamics vol.5, pp.4, 2012, https://doi.org/10.12989/imm.2012.5.4.399