DOI QR코드

DOI QR Code

Molecular dynamics simulation of bulk silicon under strain

  • Zhao, H. (Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign) ;
  • Aluru, N.R. (Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign)
  • Received : 2008.02.01
  • Accepted : 2008.04.30
  • Published : 2008.06.25

Abstract

In this paper, thermodynamical properties of crystalline silicon under strain are calculated using classical molecular dynamics (MD) simulations based on the Tersoff interatomic potential. The Helmholtz free energy of the silicon crystal under strain is calculated by using the ensemble method developed by Frenkel and Ladd (1984). To account for quantum corrections under strain in the classical MD simulations, we propose an approach where the quantum corrections to the internal energy and the Helmholtz free energy are obtained by using the corresponding energy deviation between the classical and quantum harmonic oscillators. We calculate the variation of thermodynamic properties with temperature and strain and compare them with results obtained by using the quasi-harmonic model in the reciprocal space.

Keywords

Acknowledgement

Supported by : National Science Foundation

References

  1. Almarza, N.G. (2007), "Computation of the free energy of solids", J. Chemical Phys., 126(21), 211103. https://doi.org/10.1063/1.2746231
  2. Barin, I. and Knake O. (1973), Thermochemical Properties of Inorganic Substances, Springer, Berlin.
  3. Boggild, P., Hansen, T.M., Tanasa, C. and Grey, F. (2001), "Fabrication and actuation of customized nanotweezers with a 25 nm gap", Nanotechnology, 12, 331-335. https://doi.org/10.1088/0957-4484/12/3/322
  4. Chau, M., Englander, O. and Lin, L. (2003), "Nanostructure-based nanoactuator", IEEE Nano 2003, Technical Digest, 879-880, San Francisco, August.
  5. Frenkel, D. and Ladd, A.J.C. (1984), "New Monte Carlo method to compute the free energy of arbitrary solids. Application to the free and hcp phases of hard spheres", J. Chemical Phys., 81(7), 3188-3193. https://doi.org/10.1063/1.448024
  6. Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions ", Physical Review A, 31(3), 1685-1697.
  7. LeSar, R., Najafabadi, R. and Srolovitz, D.J. (1989), "Finite-temperature defect properties from freeenergy minimization", Physical Review Letters, 63(6), 624-627. https://doi.org/10.1103/PhysRevLett.63.624
  8. Li, Q., Koo, S.-M., Richter, C.A., Edelstein, M.D., Bonevich, J.E., Kopanski, J.J., Suehle, J.S. and Vogel, E.M. (2007), "Precise Alignment of single nanowires and fabrication of nanoelectromechanical switch and other test structures", Nanotechnology, IEEE Transactions, 6(2), 256-262. https://doi.org/10.1109/TNANO.2007.891827
  9. Lutsko, J.F., Wolf, D. and Yip, S. (1988), "Molecular dynamics calculation of free energy", J. Chemical Phys., 88(10), 6525-6528. https://doi.org/10.1063/1.454437
  10. Parrinello M. and Rahman, A. (1980), "Crystal structure and pair potentials: A molecular- dynamics study", Physical Review Letters, 45(14), 1196-1199. https://doi.org/10.1103/PhysRevLett.45.1196
  11. Plimpton, S.J. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039
  12. Porter, L.J., Yip, S., Yamaguchi, M., Kaburaki, H. and Tang, M. (1997), "Empirical bond-order potential description of thermodynamic properties of crystalline silicon", J. Appl. Phys., 81(1), 96-105. https://doi.org/10.1063/1.364102
  13. Tang, Z., Zhao, H., Li, G. and Aluru, N.R. (2006), "Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures", Physical Review B, 74(6), 064110. https://doi.org/10.1103/PhysRevB.74.064110
  14. Tersoff, J. (1988), "Empirical interatomic potential for silicon with improved elastic properties", Physical Review B, 38(14), 9902-9905. https://doi.org/10.1103/PhysRevB.38.9902
  15. Wang, C.Z., Chan, C.T., and Ho, K.M. (1990), "Tight-binding molecular dynamics study of phonon anharmonic effects in silicon and diamond", Physical Review B, 42(17), 11276-11283. https://doi.org/10.1103/PhysRevB.42.11276
  16. Wei, S., Li, C. and Chou, M.Y. (1994), "Ab initio calculation of thermodynamic properties of silicon", Physical Review B. 50(19), 14587-14590. https://doi.org/10.1103/PhysRevB.50.14587
  17. Zhao, H., Tang, Z., Li, G. and Aluru, N.R. (2006), "Quasiharmonic models for the calculation of thermodynamic properties of crystalline silicon under strain", J. Appl. Phys., 99(6), 064314. https://doi.org/10.1063/1.2185834

Cited by

  1. Effect of shock on transition metal carbides and nitrides {MC/N (M = Zr, Nb, Ta, Ti)} vol.127, 2017, https://doi.org/10.1016/j.commatsci.2016.10.010
  2. Out-of-plane thermal conductivity of polycrystalline silicon nanofilm by molecular dynamics simulation vol.110, pp.5, 2011, https://doi.org/10.1063/1.3633232
  3. Ensemble averaging vs. time averaging in molecular dynamics simulations of thermal conductivity vol.117, pp.4, 2015, https://doi.org/10.1063/1.4906957
  4. Two-phase simulation of the crystalline silicon melting line at pressures from –1 to 3 GPa vol.137, pp.5, 2012, https://doi.org/10.1063/1.4739085
  5. Free energy calculations for molecular solids using GROMACS vol.139, pp.3, 2013, https://doi.org/10.1063/1.4812362
  6. Energy and force transition between atoms and continuum in quasicontinuum method vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.543
  7. Atomistic simulation and investigation of nanoindentation, contact pressure and nanohardness vol.1, pp.4, 2008, https://doi.org/10.12989/imm.2008.1.4.411
  8. The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams vol.2, pp.3, 2008, https://doi.org/10.12989/imm.2009.2.3.223
  9. Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites vol.4, pp.3, 2011, https://doi.org/10.12989/imm.2011.4.3.173
  10. Surface wettability and contact angle analysis by dissipative particle dynamics vol.5, pp.4, 2012, https://doi.org/10.12989/imm.2012.5.4.399