DOI QR코드

DOI QR Code

Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics

  • 투고 : 2007.09.10
  • 심사 : 2008.05.12
  • 발행 : 2008.06.25

초록

In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method, the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge.

키워드

참고문헌

  1. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Methods. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  2. Benz, W. (1989), "Smoothed particle hydrodynamics: a review", NATO Workshop, Les Arcs, France.
  3. Chen, J.K., Beraun, J.E. and Carrney T.C. (1999), "A corrective smoothed particle method for boundary value problems in heat conduction", Comput. Methods. Appl. Mech. Eng., 46, 231-252.
  4. Dilts, G.A. (1999), "Moving-least-squares-particle hydrodynamics - I. consistency and stability", Int. J. Numer. Methods. Eng., 44, 1115-1155. https://doi.org/10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L
  5. Dilts, G.A. (2000), "Moving-least-squares-particle hydrodynamics-II. conservation and boundaries", Int. J. Numer. Methods. Eng., 48, 1503-1524. https://doi.org/10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D
  6. de Borst, R., Rethore, J. and Abellan, M.A. (2008), "Two-scale approaches for fracture in fluid-saturated porous media", Interaction and Multiscale Mechanics, An Int. J., 1(1), 83-101. https://doi.org/10.12989/imm.2008.1.1.083
  7. Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to nonspherical stars", Monthly Notices of the Royal Astronomical Society, 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
  8. Hernquist, L. and Katz N. (1989), "TreeSPH - A unification of SPH with the hierarchical tree method", The Astrophysical J. Supplement Series, 70, 419-446. https://doi.org/10.1086/191344
  9. Hongbin, J. and Xin, D. (2005), "On criterions for smoothed particle hydrodynamics kernels in stable field", J. Comput. Phys., 202, 699-709. https://doi.org/10.1016/j.jcp.2004.08.002
  10. Jahromi, H.Z., Izzuddin, B.A. and Zdravkovic, L. (2008), "Partitioned analysis of nonlinear soil-structure interaction using iterative coupling", Interaction and Multiscale Mechanics, An Int. J., 1(1), 33-51. https://doi.org/10.12989/imm.2008.1.1.033
  11. Kobashi, W. and Matsuo, A. (2005), "Numerical study on underwater explosion simulation surrounded by an iron wall using smoothed particle hydrodynamics", Science and Technology of Energetic Materials, 66(6), 421-424.
  12. Lancaster, G.M. (1981), "Surfaces generated by moving least squares methods", Mathmatics and Computation, 3 (37), 141-158.
  13. Liu, M.B., Liu, G.R. and Lam, K.Y. (2002), "Investigations into water mitigation using a meshless particle method", Shock Waves, 12, 181-195. https://doi.org/10.1007/s00193-002-0163-0
  14. Liu, G.R. and Liu, M.B. (2003), Smoothed Particle Hydrodynamics, World Scientific, Singapore.
  15. Liu, M.B., Liu, G.R. and Lam, K.Y. (2003), "Constructing smoothing functions in smoothed particle hydrodynamics with applications", J. Comput. Appl. Math., 155, 263-284. https://doi.org/10.1016/S0377-0427(02)00869-5
  16. Liu, M.B., Liu, G.R. and Lam, K.Y. (2003), "A one-dimensional meshfree particle formulation for simulating shock waves", Shock Waves, 13, 201-211. https://doi.org/10.1007/s00193-003-0207-0
  17. Liu, M.B., Liu, G.R., Lam, K.Y. and Zong, Z. (2003), "Smoothed particle hydrodynamics for numerical simulation of underwater explosion", Comput. Mech., 30, 106-118. https://doi.org/10.1007/s00466-002-0371-6
  18. Lucy, L.B. (1977), "Numerical approach to testing the fission hypothesis", Astronomical J., 82, 1013-1024. https://doi.org/10.1086/112164
  19. Masuda, S. and Noguchi, H. (2006), "Analysis of structure with material interface by meshfree method", CMESComput. Model. Eng. Sci., 11, 131-143.
  20. Monaghan, J.J. (1992), "Smoothed particle hydrodynamics", Annual Review of Astronomical and Astrophysics, 30, 543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
  21. Monaghan, J.J. (1994), "Simulating free surface flows with SPH", J. Comput. Phys., 110, 399-406. https://doi.org/10.1006/jcph.1994.1034
  22. Morris, J.P. and Monaghan J.J. (1997), "A switch to reduce SPH viscosity", J. Comput. Phys., 136, 41-50. https://doi.org/10.1006/jcph.1997.5690
  23. Rojek, J. and Onate, E. (2008), "Multiscale analysis using a coupled discrete/finite element model", Interaction and Multiscale Mechanics, An Int. J., 1(1), 1-31. https://doi.org/10.12989/imm.2008.1.1.001
  24. Sigalotti, L.D.G., Lopez, H., Donoso, A., Sira, E. and Klapp, J. (2006), "A shock-capturing SPH scheme based on adaptive kernel estimation", J. Comput. Phys., 212, 124-149. https://doi.org/10.1016/j.jcp.2005.06.016
  25. Sod, G.A. (1978), "A survey of several finite difference methods for systems of hyperbolic conservation laws", J. Comput. Phys., 27, 1-31. https://doi.org/10.1016/0021-9991(78)90023-2
  26. Toro, E.F. (1997), Riemann Solvers and Numerical Methods for Fluid Dynamics - A Practical Introduction, Springer.

피인용 문헌

  1. Computational Simulation of Underwater Shock Wave Propagation Using Smoothed Particle Hydrodynamics vol.767, pp.1662-9752, 2013, https://doi.org/10.4028/www.scientific.net/MSF.767.86
  2. Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction vol.5, pp.3, 2008, https://doi.org/10.12989/imm.2012.5.3.287
  3. Smoothed particle hydrodynamics simulation of underwater explosions with dynamic particle refinement vol.10, pp.11, 2008, https://doi.org/10.1063/5.0029472