DOI QR코드

DOI QR Code

A multiple level set method for modeling grain boundary evolution of polycrystalline materials

  • Received : 2008.02.19
  • Accepted : 2008.05.12
  • Published : 2008.06.25

Abstract

In this paper, we model grain boundary evolution based on a multiple level set method. Grain boundary migration under a curvature-induced driving force is considered and the level set method is employed to deal with the resulting topological changes of grain structures. The complexity of using a level set method for modeling grain structure evolution is due to its N-phase nature and the associated geometry compatibility constraint. We employ a multiple level set method with a predictor-multicorrectors approach to reduce the gaps in the triple junctions down to the grid resolution level. A ghost cell approach for imposing periodic boundary conditions is introduced without solving a constrained problem with a Lagrange multiplier method or a penalty method. Numerical results for both uniform and random grain structures evolution are presented and the results are compared with the solutions based on a front tracking approach (Chen and Kotta et al. 2004b).

Keywords

Acknowledgement

Supported by : University of California

References

  1. Anderson, M.P., Srolovitz, D.J., Grest, G.S. and Sahni, P.S. (1984), "Computer simulation of grain growth-I: kinetics", Acta Metall., 32, 783-791. https://doi.org/10.1016/0001-6160(84)90151-2
  2. Babuska, I. (1973), "The finite element method with Lagrangian multipliers", Numer. Math, 20, 179-182. https://doi.org/10.1007/BF01436561
  3. Chadwick, G.A. and Smith, D.A. (1976), Grain Boundary Structure and Properties, Academic Press, New York.
  4. Chan, T.F. and Vese, L.A. (2001), "Active contours without edges", IEEE Trans. Image Proc 10, 266-277. https://doi.org/10.1109/83.902291
  5. Chen, J.S., Lu, H., Moldovan, D., and Wolf, D. (2002a), "Mesoscale modeling of grain boundary migration under stress using coupled finite element and meshfree methods", Proceeding, 5th ASCE Engineering Mechanics Conference, Columbia University.
  6. Chen, J.S., Lu, H., Moldovan, D. and Wolf, D. (2002b), "A double-grid method for modeling of microstructure evolution", The 5th World Congress on Computational Mechanics, Proceeding, Vienna, Austria.
  7. Chen, J.S., Kotta, V., Lu, H., Wang, D., Moldovan, D. and Wolf, D. (2004a), "A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials", Proceeding, Forum on Advanced Engineering Computation, Taiwan, National Taiwan University.
  8. Chen, J.S., Kotta, V., Lu, H., Wang, D., Moldovan, D. and Wolf, D. (2004b), "A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials", Comput. Methods. Appl. Mech. Eng., 193, 1277-1303. https://doi.org/10.1016/j.cma.2003.12.020
  9. Chen, J.S., Kotta, V., Lu, H., Yoon, S., Modolvan, D. and Wolf, D. (2001), "Modeling of grain boundary migration under stress", The 6th US Congress on Computational Mechanics, Detroit, MI.
  10. Chiang, C.R. (1985), "The grain size effect on the flow stress of polycrystals", Scripta Metall. 19, 1281-1283. https://doi.org/10.1016/0036-9748(85)90051-1
  11. Coble, L. (1963), "A model for boundary diffusion controlled creep in polycrystalline materials", J. Appl. Phys., 34, 1679-82. https://doi.org/10.1063/1.1702656
  12. Engquist, B. and Osher, S. (1980), "Stable and entropy satisfying approximations for transonic flow calculations", Math.Comp., 34, 45-75. https://doi.org/10.1090/S0025-5718-1980-0551290-1
  13. Fan, D. and Chen, L.Q. (1997), "Computer simulation of grain growth using a continuum eld model", Acta Mat., 45, 611-622. https://doi.org/10.1016/S1359-6454(96)00200-5
  14. Frost, H.J., Thompson, C.V., and Walton, D.T. (1990), "Simulation of thin film grain structures: I. grain growth stagnation", Acta Metallurgica et Materiala, 38, 1455-1462. https://doi.org/10.1016/0956-7151(90)90114-V
  15. Gottstein, G. and Shvindlerman, L.S. (1999), Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, CRC Press, Boca Raton.
  16. Hall, E.O. (1951), "The deformation and ageing of mild steel: III discussion of results", Proc. Phys. Soc. Lond., B64, 747-753.
  17. Herring, C. (1950), "Diffusional viscosity of a polycrystalline solid", J. Appl. Phys., 21, 437-45. https://doi.org/10.1063/1.1699681
  18. Huang, H., Gilmer, G.H. and de la Rubia, T.D. (1998), "An atomistic simulator for thin film deposition in three dimensions", J. Appl. Phys., 84, 3636-3649. https://doi.org/10.1063/1.368539
  19. Huang, H. Gilmer, G.H. (2002), "Texture competition during thin film deposition - effects of grain boundary migration", Comp. Mater. Sci., 23, 190-196. https://doi.org/10.1016/S0927-0256(01)00234-8
  20. Humphreys, F.J. and Hatherly, M. (1995), Recrystallization and Related Annealing Phenomena, Pergamon, Oxford.
  21. Krill, C.E. and Chen, L.Q. (2002), "Computer simulation of 3-d grain growth using a phase-eld model", Acta Mat., 50, 3057-3073.
  22. Kuprat, A. (2000), "Modeling Microstructure evolution using gradient-weighted moving finite elements", SIAM J. Sci. Comput., 22, 535-560. https://doi.org/10.1137/S1064827598348374
  23. Lee, T.Y. and Chen, J.S. (2004), "Modeling of grain growth using Voronoi discretization", Proceeding, 6th World Congress on Computational Mechanics, Beijing, China.
  24. Losasso, F., Shinar, T., Selle, A. and Fedkiw, R. (2006), "Multiple interacting liquids", ACM Trans. Graph., 25, 812-819. https://doi.org/10.1145/1141911.1141960
  25. Lusk, M.T. (1999), "A phase-eld paradigm for grain growth and recrystallization", Proc. Roy. Soc. Lond., A455, 677-700.
  26. Merriman, B., Bence, J.K. and Osher, S. (1994), "Motion of multiple junctions - a level set approach", J. Comput. Phys., 112, 334-363. https://doi.org/10.1006/jcph.1994.1105
  27. Morral, J.E. and Ashby, M.F. (1974), "Dislocated cellular structures", Acta Metall., 22, 567-575. https://doi.org/10.1016/0001-6160(74)90154-0
  28. Osher, S. and Sethian, J.A. (1998), "Fronts propagating with curvature dependent speed: Algorithms based on hamilton-jacobi formulations", J. Comput. Phys., 79, 12-49.
  29. Osher, S. and Fedkiw, R. (2001), "Level set methods: An overview and some recent results", J. Comput. Phys., 169, 463-502. https://doi.org/10.1006/jcph.2000.6636
  30. Osher, S. and Fedkiw, R. (2002), Level set methods and dynamic implicit surfaces, Springer-Verlag.
  31. Peng, D., Merriman, B., Osher, S., Zhao, H.K. and Kang, M. (1999), "A PDE based fast local level set method", J. Comput. Phys., 155, 410-438. https://doi.org/10.1006/jcph.1999.6345
  32. Petch, N.J. (1953), "The cleavage strength of polycrystals", J. Iron and Steel Institute, 174, 25-28.
  33. Rojek, J. and Onate, E. (2008), "Multiscale analysis using a coupled discrete/finite element model", Interaction and Multiscale Mechanics, An Int. J. 1(1), 1-31.
  34. Roosen, A.R. and Carter, W.C. (1998), "Simulations of microstructural evolution: anisotropic growth and coarsening", Physica, A261, 232-247.
  35. Sahni, P.S., Grest, G.S. and Safran, S.A. (1983), "Kinetics of the Q-state potts model in two dimensions", Phys. Rev. Lett., 50, 263-266. https://doi.org/10.1103/PhysRevLett.50.263
  36. Smith, C.S. (1952), "Grain shapes and other metallurgical applications of topology", Metal Interfaces, American Society for Metals, Cleveland, Ohio, 65-108.
  37. Smith, K., Solis, F. and Chopp, D. (2002), "A projection method for motion of triple junctions by level sets", Interfaces and Free Boundaries, 4, 263-276.
  38. Sussman, M., Smereka, P. and Osher, S. (1994), "A level set approach for computing solutions to incompressible two-phase flow", J. Comput. Phys., 114, 146-159. https://doi.org/10.1006/jcph.1994.1155
  39. Thompson, C.V. (2000), "Grain growth and evolution of other cellular structures", Solid State Phys, 55269-314.
  40. Warren, J.A., Kobayashi, R. and Carter, W.C. (2000), "Modeling grain boundaries using a phase-eld technique", Joural Crystal Growth, 211, 18-20. https://doi.org/10.1016/S0022-0248(99)00856-8
  41. Zhao, H.K., Chan, T., Merriman, B. and Osher, S. (1996), "A variational level set approach to multiphase motion", J. Comput. Phys., 127, 179-195. https://doi.org/10.1006/jcph.1996.0167

Cited by

  1. Stability and dispersion analysis of reproducing kernel collocation method for transient dynamics vol.32, pp.6, 2011, https://doi.org/10.1007/s10483-011-1457-6
  2. Modeling of Phase-Change Memory: Nucleation, Growth, and Amorphization Dynamics During Set and Reset: Part II—Discrete Grains vol.64, pp.11, 2017, https://doi.org/10.1109/TED.2017.2745500
  3. A level set approach for optimal design of smart energy harvesters vol.199, pp.37-40, 2010, https://doi.org/10.1016/j.cma.2010.04.008
  4. Guidance to design grain boundary mobility experiments with molecular dynamics and phase-field modeling vol.61, pp.4, 2013, https://doi.org/10.1016/j.actamat.2012.11.014
  5. Reproducing kernel based evaluation of incompatibility tensor in field theory of plasticity vol.1, pp.4, 2008, https://doi.org/10.12989/imm.2008.1.4.423
  6. Demonstrating the Temperature Gradient Impact on Grain Growth in UO2Using the Phase Field Method vol.2, pp.1, 2014, https://doi.org/10.1080/21663831.2013.849300
  7. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring vol.22, pp.8, 2016, https://doi.org/10.1109/TVCG.2015.2476788
  8. Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method vol.83, 2017, https://doi.org/10.1016/j.cad.2016.09.009
  9. Unconventional phase field simulations of transforming materials with evolving microstructures vol.28, pp.4, 2012, https://doi.org/10.1007/s10409-012-0129-0
  10. Support Size Adjustment Algorithm for Reproducing Kernel Particle Method with Semi-Lagrangian Formulation vol.368-373, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.368-373.1660
  11. An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization vol.17, pp.4, 2017, https://doi.org/10.1115/1.4037738
  12. An explicit algorithm for imbedding solid boundaries in Cartesian grids for the reactive Euler equations vol.22, pp.4, 2018, https://doi.org/10.1080/13647830.2018.1450525
  13. Current and future trends in topology optimization for additive manufacturing vol.57, pp.6, 2018, https://doi.org/10.1007/s00158-018-1994-3
  14. Influence of grain interaction on lattice strain evolution in two-phase polycrystals vol.4, pp.2, 2011, https://doi.org/10.12989/imm.2011.4.2.155
  15. Development of a three-dimensional dynamic model for chemotaxis vol.4, pp.2, 2008, https://doi.org/10.12989/imm.2011.4.2.165
  16. Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction vol.5, pp.3, 2008, https://doi.org/10.12989/imm.2012.5.3.287
  17. Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM vol.115, pp.None, 2008, https://doi.org/10.1016/j.commatsci.2015.12.042
  18. Application of statistical representation of the microstructure to modeling of phase transformations in DP steels by solution of the diffusion equation vol.15, pp.None, 2008, https://doi.org/10.1016/j.promfg.2018.07.205
  19. Large-scale phase-field simulation of three-dimensional isotropic grain growth in polycrystalline thin films vol.27, pp.5, 2008, https://doi.org/10.1088/1361-651x/ab1e8b
  20. Computational modelling of multi-material energetic materials and systems vol.24, pp.3, 2020, https://doi.org/10.1080/13647830.2019.1689299
  21. A constitutive level-set model for shape memory alloys vol.55, pp.8, 2020, https://doi.org/10.1007/s11012-020-01186-2
  22. Numerical Modeling of Phase Transformations in Dual-Phase Steels Using Level Set and SSRVE Approaches vol.14, pp.18, 2021, https://doi.org/10.3390/ma14185363
  23. Conformal topology optimization of multi-material ferromagnetic soft active structures using an extended level set method vol.389, pp.None, 2008, https://doi.org/10.1016/j.cma.2021.114394