Acknowledgement
Supported by : University of California
References
- Anderson, M.P., Srolovitz, D.J., Grest, G.S. and Sahni, P.S. (1984), "Computer simulation of grain growth-I: kinetics", Acta Metall., 32, 783-791. https://doi.org/10.1016/0001-6160(84)90151-2
- Babuska, I. (1973), "The finite element method with Lagrangian multipliers", Numer. Math, 20, 179-182. https://doi.org/10.1007/BF01436561
- Chadwick, G.A. and Smith, D.A. (1976), Grain Boundary Structure and Properties, Academic Press, New York.
- Chan, T.F. and Vese, L.A. (2001), "Active contours without edges", IEEE Trans. Image Proc 10, 266-277. https://doi.org/10.1109/83.902291
- Chen, J.S., Lu, H., Moldovan, D., and Wolf, D. (2002a), "Mesoscale modeling of grain boundary migration under stress using coupled finite element and meshfree methods", Proceeding, 5th ASCE Engineering Mechanics Conference, Columbia University.
- Chen, J.S., Lu, H., Moldovan, D. and Wolf, D. (2002b), "A double-grid method for modeling of microstructure evolution", The 5th World Congress on Computational Mechanics, Proceeding, Vienna, Austria.
- Chen, J.S., Kotta, V., Lu, H., Wang, D., Moldovan, D. and Wolf, D. (2004a), "A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials", Proceeding, Forum on Advanced Engineering Computation, Taiwan, National Taiwan University.
- Chen, J.S., Kotta, V., Lu, H., Wang, D., Moldovan, D. and Wolf, D. (2004b), "A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials", Comput. Methods. Appl. Mech. Eng., 193, 1277-1303. https://doi.org/10.1016/j.cma.2003.12.020
- Chen, J.S., Kotta, V., Lu, H., Yoon, S., Modolvan, D. and Wolf, D. (2001), "Modeling of grain boundary migration under stress", The 6th US Congress on Computational Mechanics, Detroit, MI.
- Chiang, C.R. (1985), "The grain size effect on the flow stress of polycrystals", Scripta Metall. 19, 1281-1283. https://doi.org/10.1016/0036-9748(85)90051-1
- Coble, L. (1963), "A model for boundary diffusion controlled creep in polycrystalline materials", J. Appl. Phys., 34, 1679-82. https://doi.org/10.1063/1.1702656
- Engquist, B. and Osher, S. (1980), "Stable and entropy satisfying approximations for transonic flow calculations", Math.Comp., 34, 45-75. https://doi.org/10.1090/S0025-5718-1980-0551290-1
- Fan, D. and Chen, L.Q. (1997), "Computer simulation of grain growth using a continuum eld model", Acta Mat., 45, 611-622. https://doi.org/10.1016/S1359-6454(96)00200-5
- Frost, H.J., Thompson, C.V., and Walton, D.T. (1990), "Simulation of thin film grain structures: I. grain growth stagnation", Acta Metallurgica et Materiala, 38, 1455-1462. https://doi.org/10.1016/0956-7151(90)90114-V
- Gottstein, G. and Shvindlerman, L.S. (1999), Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, CRC Press, Boca Raton.
- Hall, E.O. (1951), "The deformation and ageing of mild steel: III discussion of results", Proc. Phys. Soc. Lond., B64, 747-753.
- Herring, C. (1950), "Diffusional viscosity of a polycrystalline solid", J. Appl. Phys., 21, 437-45. https://doi.org/10.1063/1.1699681
- Huang, H., Gilmer, G.H. and de la Rubia, T.D. (1998), "An atomistic simulator for thin film deposition in three dimensions", J. Appl. Phys., 84, 3636-3649. https://doi.org/10.1063/1.368539
- Huang, H. Gilmer, G.H. (2002), "Texture competition during thin film deposition - effects of grain boundary migration", Comp. Mater. Sci., 23, 190-196. https://doi.org/10.1016/S0927-0256(01)00234-8
- Humphreys, F.J. and Hatherly, M. (1995), Recrystallization and Related Annealing Phenomena, Pergamon, Oxford.
- Krill, C.E. and Chen, L.Q. (2002), "Computer simulation of 3-d grain growth using a phase-eld model", Acta Mat., 50, 3057-3073.
- Kuprat, A. (2000), "Modeling Microstructure evolution using gradient-weighted moving finite elements", SIAM J. Sci. Comput., 22, 535-560. https://doi.org/10.1137/S1064827598348374
- Lee, T.Y. and Chen, J.S. (2004), "Modeling of grain growth using Voronoi discretization", Proceeding, 6th World Congress on Computational Mechanics, Beijing, China.
- Losasso, F., Shinar, T., Selle, A. and Fedkiw, R. (2006), "Multiple interacting liquids", ACM Trans. Graph., 25, 812-819. https://doi.org/10.1145/1141911.1141960
- Lusk, M.T. (1999), "A phase-eld paradigm for grain growth and recrystallization", Proc. Roy. Soc. Lond., A455, 677-700.
- Merriman, B., Bence, J.K. and Osher, S. (1994), "Motion of multiple junctions - a level set approach", J. Comput. Phys., 112, 334-363. https://doi.org/10.1006/jcph.1994.1105
- Morral, J.E. and Ashby, M.F. (1974), "Dislocated cellular structures", Acta Metall., 22, 567-575. https://doi.org/10.1016/0001-6160(74)90154-0
- Osher, S. and Sethian, J.A. (1998), "Fronts propagating with curvature dependent speed: Algorithms based on hamilton-jacobi formulations", J. Comput. Phys., 79, 12-49.
- Osher, S. and Fedkiw, R. (2001), "Level set methods: An overview and some recent results", J. Comput. Phys., 169, 463-502. https://doi.org/10.1006/jcph.2000.6636
- Osher, S. and Fedkiw, R. (2002), Level set methods and dynamic implicit surfaces, Springer-Verlag.
- Peng, D., Merriman, B., Osher, S., Zhao, H.K. and Kang, M. (1999), "A PDE based fast local level set method", J. Comput. Phys., 155, 410-438. https://doi.org/10.1006/jcph.1999.6345
- Petch, N.J. (1953), "The cleavage strength of polycrystals", J. Iron and Steel Institute, 174, 25-28.
- Rojek, J. and Onate, E. (2008), "Multiscale analysis using a coupled discrete/finite element model", Interaction and Multiscale Mechanics, An Int. J. 1(1), 1-31.
- Roosen, A.R. and Carter, W.C. (1998), "Simulations of microstructural evolution: anisotropic growth and coarsening", Physica, A261, 232-247.
- Sahni, P.S., Grest, G.S. and Safran, S.A. (1983), "Kinetics of the Q-state potts model in two dimensions", Phys. Rev. Lett., 50, 263-266. https://doi.org/10.1103/PhysRevLett.50.263
- Smith, C.S. (1952), "Grain shapes and other metallurgical applications of topology", Metal Interfaces, American Society for Metals, Cleveland, Ohio, 65-108.
- Smith, K., Solis, F. and Chopp, D. (2002), "A projection method for motion of triple junctions by level sets", Interfaces and Free Boundaries, 4, 263-276.
- Sussman, M., Smereka, P. and Osher, S. (1994), "A level set approach for computing solutions to incompressible two-phase flow", J. Comput. Phys., 114, 146-159. https://doi.org/10.1006/jcph.1994.1155
- Thompson, C.V. (2000), "Grain growth and evolution of other cellular structures", Solid State Phys, 55269-314.
- Warren, J.A., Kobayashi, R. and Carter, W.C. (2000), "Modeling grain boundaries using a phase-eld technique", Joural Crystal Growth, 211, 18-20. https://doi.org/10.1016/S0022-0248(99)00856-8
- Zhao, H.K., Chan, T., Merriman, B. and Osher, S. (1996), "A variational level set approach to multiphase motion", J. Comput. Phys., 127, 179-195. https://doi.org/10.1006/jcph.1996.0167
Cited by
- Stability and dispersion analysis of reproducing kernel collocation method for transient dynamics vol.32, pp.6, 2011, https://doi.org/10.1007/s10483-011-1457-6
- Modeling of Phase-Change Memory: Nucleation, Growth, and Amorphization Dynamics During Set and Reset: Part II—Discrete Grains vol.64, pp.11, 2017, https://doi.org/10.1109/TED.2017.2745500
- A level set approach for optimal design of smart energy harvesters vol.199, pp.37-40, 2010, https://doi.org/10.1016/j.cma.2010.04.008
- Guidance to design grain boundary mobility experiments with molecular dynamics and phase-field modeling vol.61, pp.4, 2013, https://doi.org/10.1016/j.actamat.2012.11.014
- Reproducing kernel based evaluation of incompatibility tensor in field theory of plasticity vol.1, pp.4, 2008, https://doi.org/10.12989/imm.2008.1.4.423
- Demonstrating the Temperature Gradient Impact on Grain Growth in UO2Using the Phase Field Method vol.2, pp.1, 2014, https://doi.org/10.1080/21663831.2013.849300
- Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring vol.22, pp.8, 2016, https://doi.org/10.1109/TVCG.2015.2476788
- Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method vol.83, 2017, https://doi.org/10.1016/j.cad.2016.09.009
- Unconventional phase field simulations of transforming materials with evolving microstructures vol.28, pp.4, 2012, https://doi.org/10.1007/s10409-012-0129-0
- Support Size Adjustment Algorithm for Reproducing Kernel Particle Method with Semi-Lagrangian Formulation vol.368-373, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.368-373.1660
- An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization vol.17, pp.4, 2017, https://doi.org/10.1115/1.4037738
- An explicit algorithm for imbedding solid boundaries in Cartesian grids for the reactive Euler equations vol.22, pp.4, 2018, https://doi.org/10.1080/13647830.2018.1450525
- Current and future trends in topology optimization for additive manufacturing vol.57, pp.6, 2018, https://doi.org/10.1007/s00158-018-1994-3
- Influence of grain interaction on lattice strain evolution in two-phase polycrystals vol.4, pp.2, 2011, https://doi.org/10.12989/imm.2011.4.2.155
- Development of a three-dimensional dynamic model for chemotaxis vol.4, pp.2, 2008, https://doi.org/10.12989/imm.2011.4.2.165
- Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction vol.5, pp.3, 2008, https://doi.org/10.12989/imm.2012.5.3.287
- Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM vol.115, pp.None, 2008, https://doi.org/10.1016/j.commatsci.2015.12.042
- Application of statistical representation of the microstructure to modeling of phase transformations in DP steels by solution of the diffusion equation vol.15, pp.None, 2008, https://doi.org/10.1016/j.promfg.2018.07.205
- Large-scale phase-field simulation of three-dimensional isotropic grain growth in polycrystalline thin films vol.27, pp.5, 2008, https://doi.org/10.1088/1361-651x/ab1e8b
- Computational modelling of multi-material energetic materials and systems vol.24, pp.3, 2020, https://doi.org/10.1080/13647830.2019.1689299
- A constitutive level-set model for shape memory alloys vol.55, pp.8, 2020, https://doi.org/10.1007/s11012-020-01186-2
- Numerical Modeling of Phase Transformations in Dual-Phase Steels Using Level Set and SSRVE Approaches vol.14, pp.18, 2021, https://doi.org/10.3390/ma14185363
- Conformal topology optimization of multi-material ferromagnetic soft active structures using an extended level set method vol.389, pp.None, 2008, https://doi.org/10.1016/j.cma.2021.114394