DOI QR코드

DOI QR Code

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy (Institute of Fundamental Technological Research) ;
  • Onate, Eugenio (International Center for Numerical Methods in Engineering (CIMNE) Universidad Politecnica de Cataluna, Campus Norte UPC)
  • 투고 : 2007.07.31
  • 심사 : 2007.11.11
  • 발행 : 2008.03.25

초록

The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

키워드

참고문헌

  1. Argyris, J. (1982), "An excursion into large rotations", Comput. Meth. Appl. Mech. Eng., 32, 85-155. https://doi.org/10.1016/0045-7825(82)90069-X
  2. Bagi, K. (1996), "Stress and strain in granular assemblies", Mechanics of Materials, 22, 165-177. https://doi.org/10.1016/0167-6636(95)00044-5
  3. Bardet, J.P. and Proubet, J. (1989) "Application of micromechanics to incrementally nonlinear constitutive equations for granular media", In J. Biarez and R. Gourves, editors, Powders and Grains. Proceedings of the International Conference on Micromechanics of Granular Media, Clermont-Ferrand, 4-8 September 1989, pages 265-270, Rotterdam, Balkema.
  4. Belytschko, T., Smolinski, P. and Liu, W.K. (1985), "Stability of multi-time step partitioned integrators for the first order finite element systems", Comput. Meth. Appl. Mech. Eng., 49, 281-297. https://doi.org/10.1016/0045-7825(85)90126-4
  5. Christensen, R. (1979), Mechanics of Composite Materials. John Wiley, New York.
  6. Cook, B.K. and Jensen, R.P. (2002) editors. "Discrete element methods: numerical modeling of discontinua", Proceedings of the Third International Conference on Discrete Element Methods, Santa Fe, New Mexico.
  7. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical method for granular assemblies", Geotechnique, 29, 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  8. Cundall, P.A. (1988), "Formulation of a three dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system of many polyhedral blocks", Int. J. Rock Mech., Min. Sci. & Geomech. Abstr., 25(3), 107-116.
  9. Huang, H. (1999), "Discrete element modeling of tool-rock interaction", PhD thesis, University of Minnesota.
  10. Kouznetsova, V. (2002), "Computational homogenization for the multi-scale analysis of multiphase materials", PhD thesis, Technische Universiteit of Eindhoven.
  11. Langhaar, H.L. (1951) Dimensional Analysis and Theory of Models. Wiley.
  12. Latzel, M., Luding, S. and Herrmann, H.J. (2000), "Macroscopic material properties from quasistatic, microscopic simulations of a two-dimensional shear-cell", Granular Matter, 2, 123-135. https://doi.org/10.1007/s100350000048
  13. Latzel, M. (2003), "From microscopic simulations towards a macroscopic description of granular media", PhD thesis, University of Stuttgart.
  14. Liao, C.L. and Chan, T.C. (1997), "Generalized constitutive relation for a randomly packed particle assembly", Computers and Geotechnics, 20, 345-363. https://doi.org/10.1016/S0266-352X(97)00010-4
  15. Liao, Ch.-L., Chang, T.-P., Young, D.-H. and Chang, Ch.S. (1997), "Stress-strain relationship for granular materials based on the hypothesis of best fit", Int. J. Solids and Structures, 34, 4087-4100. https://doi.org/10.1016/S0020-7683(97)00015-2
  16. Luding, S. (2004), "Micro-macro transition for anisotropic, aperiodic, granular materials", Int. J. Solids and Structures, 41, 5821-5836. https://doi.org/10.1016/j.ijsolstr.2004.05.048
  17. Miehe, C. (1996), "Numerical computation of algorithmic (consistent) tangent moduli in largestrain computational elasticity", Comput. Meth. Appl. Mech. Eng., 134, 223-240. https://doi.org/10.1016/0045-7825(96)01019-5
  18. Miehe, C., Schroder, J. and Becker, M. (2002), "Computational homogenization analysis in finite elasticity: Material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction", Comput. Meth. Appl. Mech. Eng., 191, 4971-5005. https://doi.org/10.1016/S0045-7825(02)00391-2
  19. Munjiza, A. (2004) The Combined Finite-Discrete Element Method. Wiley.
  20. Nemat-Nasser, S. and Hori, M. (1993), Micromechanics: overall properties of heterogeneous materials. North Holland, Amsterdam.
  21. Onate, E. and Rojek, J. (2004), "Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems", Comput.Meth. Appl.Mech. Eng., 193, 3087-3128. https://doi.org/10.1016/j.cma.2003.12.056
  22. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  23. Ramm, E., D'Addetta, G.A. and Leukart, M. (2003), "Interrelations between continuum and discontinuum models for geomaterials", VII International Conference on Computational Plasticity COMPLAS 2003, Barcelona.
  24. Rojek, J. and Onate, E. (2004), "Unified DEM/FEM approach to geomechanics problems", Proceedings of ComputationalMechanics WCCM VI in conjunction with APCOM04, Beijing, China, Sept. 5-10.
  25. Rojek, J. (2007), "Modelling and simulation of complex problems of nonlinear mechanics using the finite and discrete element methods" (in Polish). Habilitiation Thesis, Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw.
  26. Rojek, J., Onate, E., Zarate, F. and Miquel, J. (2001), "Modelling of rock, soil and granular materials using spherical elements", 2nd European Conference on Computational Mechanics ECCM-2001, Cracow, 26-29 June.
  27. Xiao, S.P. and Belytschko, T. (2004), "A bridging domain method for coupling continua with molecular dynamics", Comput. Meth. Appl. Mech. Eng., 193, 1645-1669. https://doi.org/10.1016/j.cma.2003.12.053
  28. Yang, B., Jiao, Y. and Lei, S. (2006), "A study on the effects of microparameters on macroproperties for specimens created by bonded particles", Eng. Comput., 23(6), 607-631. https://doi.org/10.1108/02644400610680333
  29. Young, R.P., Collins, D.S., Hazzard, J., Heath, A., Pettitt, W.S., Baker, C., Billaux, D., Cundall, P., Potyondy, D., Dedecker, F., Svemar, C. and Lebon, P. (2004), "An innovative 3-D numerical modelling procedure for simulating repository-scale excavations in rock-SAFETI", Proceedings of the Euradwaste04 Conference on Radioactive Waste Management Community Policy and Research Initiatives, Luxembourg.
  30. Yua, Y., Yinb, J. and Zhong, Z. (2006), "Shape effects in the Brazilian tensile strength test and a 3D FEM correction", Int. J. Rock Mech. Min. Sci., 43, 623-627. https://doi.org/10.1016/j.ijrmms.2005.09.005

피인용 문헌

  1. A local constitutive model for the discrete element method. Application to geomaterials and concrete vol.2, pp.2, 2015, https://doi.org/10.1007/s40571-015-0044-9
  2. Combined Discrete–Finite Element Modeling of Ballasted Railway Track Under Cyclic Loading vol.14, pp.05, 2017, https://doi.org/10.1142/S0219876217500475
  3. Una nueva estrategia para el estudio de la vulnerabilidad de edificios expuestos a explosiones a cielo abierto vol.33, pp.3-4, 2017, https://doi.org/10.1016/j.rimni.2016.07.001
  4. Coupling of FEM and DEM simulations to consider dynamic deformations under particle load vol.19, pp.3, 2017, https://doi.org/10.1007/s10035-017-0728-3
  5. AN APPROACH TO FREELY COMBINING 3D DISCRETE AND FINITE ELEMENT METHODS vol.11, pp.01, 2014, https://doi.org/10.1142/S0219876213500515
  6. Multiple length/time-scale simulation of localized damage in composite structures using a Mesh Superposition Technique vol.121, 2015, https://doi.org/10.1016/j.compstruct.2014.11.005
  7. Viscoelastic discrete element model of powder sintering vol.246, 2013, https://doi.org/10.1016/j.powtec.2013.05.020
  8. A simple FEM–DEM technique for fracture prediction in materials and structures vol.2, pp.3, 2015, https://doi.org/10.1007/s40571-015-0067-2
  9. A two-scale model of granular materials vol.205-208, 2012, https://doi.org/10.1016/j.cma.2010.12.023
  10. Multiscale seamless-domain method for solving nonlinear heat conduction problems without iterative multiscale calculations vol.3, pp.4, 2016, https://doi.org/10.1299/mej.15-00491
  11. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure vol.102, 2015, https://doi.org/10.1016/j.commatsci.2015.02.026
  12. Seamless-domain method: a meshfree multiscale numerical analysis vol.106, pp.4, 2016, https://doi.org/10.1002/nme.5115
  13. Application of an enhanced discrete element method to oil and gas drilling processes vol.3, pp.1, 2016, https://doi.org/10.1007/s40571-015-0080-5
  14. Multi-scale simulation method with coupled finite/discrete element model and its application vol.26, pp.4, 2013, https://doi.org/10.3901/CJME.2013.04.659
  15. DEM–FEA estimation of pores arrangement effect on the compressive Young’s modulus for Mg foams vol.110, 2015, https://doi.org/10.1016/j.commatsci.2015.08.042
  16. Multiscale seamless-domain method for linear elastic analysis of heterogeneous materials vol.105, pp.8, 2016, https://doi.org/10.1002/nme.4983
  17. A multiscale coupling approach between discrete element method and finite difference method for dynamic analysis vol.102, pp.1, 2015, https://doi.org/10.1002/nme.4771
  18. A virtual-surface contact algorithm for the interaction between FE and spherical DE vol.108, 2016, https://doi.org/10.1016/j.finel.2015.09.001
  19. Pulse fracture simulation in shale rock reservoirs: DEM and FEM–DEM approaches 2017, https://doi.org/10.1007/s40571-017-0174-3
  20. Computational simulation of fracture of materials in comminution devices vol.61, 2014, https://doi.org/10.1016/j.mineng.2014.03.010
  21. A ghost particle-based coupling approach for the combined finite-discrete element method vol.114, 2016, https://doi.org/10.1016/j.finel.2016.02.005
  22. Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter vol.50, pp.3, 2017, https://doi.org/10.1007/s00603-016-1133-7
  23. Coupling resolved and coarse-grain DEM models vol.36, pp.4, 2018, https://doi.org/10.1080/02726351.2017.1402836
  24. Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics vol.1, pp.2, 2008, https://doi.org/10.12989/imm.2008.1.2.251
  25. A study on convergence and complexity of reproducing kernel collocation method vol.2, pp.3, 2008, https://doi.org/10.12989/imm.2009.2.3.295
  26. Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites vol.4, pp.3, 2011, https://doi.org/10.12989/imm.2011.4.3.173
  27. On the continuum formulation for modeling DNA loop formation vol.4, pp.3, 2011, https://doi.org/10.12989/imm.2011.4.3.219
  28. Hierarchical Multiscale Modeling of Tire-Soil Interaction for Off-Road Mobility Simulation vol.14, pp.6, 2008, https://doi.org/10.1115/1.4042510
  29. Investigation on the effective parameters of through-the-width crack propagation in ceramic coatings due to substrate tension using discrete element method vol.234, pp.1, 2020, https://doi.org/10.1177/1464420719876314
  30. Multibody Dynamics Versus Fluid Dynamics: Two Perspectives on the Dynamics of Granular Flows vol.15, pp.9, 2008, https://doi.org/10.1115/1.4047237
  31. DEM-BEM coupling in time domain for one-dimensional wave propagation vol.135, pp.None, 2008, https://doi.org/10.1016/j.enganabound.2021.10.017
  32. Mechanical and thermomechanical mesoscale analysis of multiple surface cracks in ceramic coatings based on the DEM-FEM coupling method vol.236, pp.None, 2022, https://doi.org/10.1016/j.ijsolstr.2021.111336
  33. Discrete element-embedded finite element model for simulation of soft particle motion and deformation vol.68, pp.None, 2008, https://doi.org/10.1016/j.partic.2021.10.008