References
- Lei, Y., Kiremidjian, A. S., Nair, K. K., Lynch, J. P. and Law, K. H. (2005), "Algorithms for time synchronization of wireless structural monitoring sensors", Earthq. Eng. Struct. Dyn. 34, 555-573. https://doi.org/10.1002/eqe.432
- Wang, Y., Lynch, J. P. and Law, K. H. (2005), "A wireless structural health monitoring system with multithreaded sensing devices: design and validation", Structural Infrastr. Eng., in press.
- Doebling, S. W., Farr, C. R., Prime, M. B., and Shevitz, D. W. (1996), "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review", Los Alamos National Laboratory, Tech. Rep., May.
- Kondo, I. and Hamamoto, T. (1996), "Seismic damage detection of multi-story building using vibration monitoring", Eleventh World Conference on Earthquake Engineering, Paper No. 988.
- Safak, E. (1989), "Adaptive modeling, identification, and control of dynamic structural systems: I - Theory", J. Eng. Mech., ASCE, 115(11), 2386-2405. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:11(2386)
- Safak, E. (1989), "Adaptive modeling, identification, and control of dynamic structural systems: II - Application", J. Eng. Mech., ASCE, 115(11), 2406-2426. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:11(2406)
- Andersson, P. (1985), "Adaptive forgetting in recursive identification through multiple models", Int. J. Control, 42(5), 1175-1193. https://doi.org/10.1080/00207178508933420
- Loh, C. H. and Lin, H. M. (1996), "Application of off line and on line identification techniques to building seismic response data", Earthq. Eng. Struct. Dyn., 25(3), 269-290. https://doi.org/10.1002/(SICI)1096-9845(199603)25:3<269::AID-EQE554>3.0.CO;2-J
- Sohn, H., Farrar, C. R., Hunter, N. And Worden, K. (2001), "Applying the LANL statistical pattern recognition paradigm for structural health monitoring to data from a surface-effect fast patrol boat", Los Alamos National Laboratory Report No. LA-13761-MS, University of California, Los Alamos, NM.
- Sohn, H. and Farrar, C. R. (2001), "Damage diagnosis using time series analysis of vibration signals", Smart Mater. Struct., 10, 446-451. https://doi.org/10.1088/0964-1726/10/3/304
- Lynch, J. P., Sundararajan, A., Law, K. H., Kiremidjian, A. S. and Carryer, E. (2004), "Embedding damage detection algorithms in a wireless sensing unit for attainment of operational power efficiency", Smart Mater. Struct., 13(4), 800-810. https://doi.org/10.1088/0964-1726/13/4/018
- Lei, Y., Kiremidjian, A. S., Nair, K. K., Lynch, J. P., Law, K. H., Kenny, T. W., Carryer, E., and Kottapalli, A. (2003), "Statistical damage detection using time series analysis on a structural health monitoring benchmark problem", Proc. 9th International conference on Application of Statistics and Probability in Civil engineering ICAPS-9, San Francisco, US.
- Lynch, J. P., Wang, Y, Lu, K. C., Hou, T. C. and Loh, C. H. (2006), "Post-seismic damage assessment of steel structures instrumented with self-interrogating wireless sensors", Proc. of the 8-th U.S. National Conf. on Earthquake Engineering, paper No. 1390, San Francisco, US, April.
- Wang, Y., Swartz, R. A., Lynch, J. P., Law, K. H., Lu, K. C., Loh, C. H. (2007), "Decentralized civil structural control using real-time wireless sensing and embedded computing", Smart Struct. Sys., 3(3), 321-340. https://doi.org/10.12989/sss.2007.3.3.321
- Lynch, J. P., Sundararajian, A., Law, K. H. and Kiremidjian, A. S., Kenny, (2002), Thomas and Carryer, Ed, "Computational core design of a wireless structural health monitoring system", Proceedings of Advances in Structural Engineering and Mechanics (ASEM'02), Pusan, Korea, August 21-23.
- McKenna, F. and Fenves, G. L. (2000), "An object-oriented software design for parallel structural analysis", Proceedings of Advanced Technology in Structural Engineering, Structures Congress 2000, Philadelphia, Pennsylvania, USA, May 8-10. (Software available at http://opensees. berkeley.edu/).
- Corbin, M., Hera, A. and Hou, Z. (2000), "Locating damages using wavelet approach", Proc. 14th Engineering Mechanics Conf. (EM2000), (CD Rom), Austin, TX.
- Hou, Z., Noori, M. and St. Amand, R. (2000), "Wavelet-based approach for structural damage detection", ASCE, J. Eng. Mech. Div., Am. Soc. Civ. Eng., 12(7), 677-683.
- Yen, Gary G. and Lin, Kuo-Chung, (2000), "Wavelet packet feature extraction for vibration monitoring", IEEE, 47(3), 650-667.
- Sun, Z. and Chang, C. C. (2002), "Structural damage assessment based on wavelet packet transform", ASCE, J. Struct. Eng., 128(10), 1354-1361.
- Yang, J. N., Lin, S., Huang, H. and Zhou, L. (2006), "An adaptive extended kalman filter for structural damage identification", Struct. Control Health Monitoring, 13, 849-867. https://doi.org/10.1002/stc.84
- Yang, J. N., Lin, S. and Zhou, L. (2004), "Identification of parametric changes for civil engineering structures using an adaptive kalman filter", Smart Struct. Mater., 5391, 389-399.
- Huang, S.-K., Loh, C.-H., Liao, W. I. and Yang, J. N. (2008), "On-line tracking techniques of structural parameters based on adaptive Kalman filter algorithm", submitted.
Cited by
- Optimal selection of autoregressive model coefficients for early damage detectability with an application to wind turbine blades vol.70-71, 2016, https://doi.org/10.1016/j.ymssp.2015.09.007
- Sequential projection pursuit for optimised vibration-based damage detection in an experimental wind turbine blade vol.27, pp.2, 2018, https://doi.org/10.1088/1361-665X/aa9f8e
- Multiscale Acceleration-Dynamic Strain-Impedance Sensor System for Structural Health Monitoring vol.8, pp.10, 2012, https://doi.org/10.1155/2012/709208
- Damage localization using a power-efficient distributed on-board signal processing algorithm in a wireless sensor network vol.21, pp.2, 2012, https://doi.org/10.1088/0964-1726/21/2/025005
- Wavelet-based AR–SVM for health monitoring of smart structures vol.22, pp.1, 2013, https://doi.org/10.1088/0964-1726/22/1/015003
- Estimating Cumulative Distribution Functions with Maximum Likelihood to Sample Data Sets of a Sea Floater Model vol.37, pp.5, 2013, https://doi.org/10.5394/KINPR.2013.37.5.453
- Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures vol.23, pp.1, 2016, https://doi.org/10.1007/s11831-014-9135-7
- Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics vol.27, pp.3, 2018, https://doi.org/10.1088/1361-665X/aaa7ff
- Improved damage detectability in a wind turbine blade by optimal selection of vibration signal correlation coefficients vol.15, pp.6, 2016, https://doi.org/10.1177/1475921716657016
- A damage detection algorithm integrated with a wireless sensing system vol.305, 2011, https://doi.org/10.1088/1742-6596/305/1/012042
- Nonlinear multiclass support vector machine–based health monitoring system for buildings employing magnetorheological dampers vol.25, pp.12, 2014, https://doi.org/10.1177/1045389X13507343
- Repetitive model refinement for structural health monitoring using efficient Akaike information criterion vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1329
- Health monitoring of a steel moment-resisting frame subjected to seismic loads vol.140, 2018, https://doi.org/10.1016/j.jcsr.2017.10.023
- A Computationally Efficient Algorithm for Real-Time Tracking the Abrupt Stiffness Degradations of Structural Elements vol.31, pp.6, 2016, https://doi.org/10.1111/mice.12217
- Probability Based Risk Evaluation Techniques for the Small-Sized Sea Floater vol.36, pp.10, 2012, https://doi.org/10.5394/KINPR.2012.36.10.795
- Chaos in the fractionally damped broadband piezoelectric energy generator vol.80, pp.4, 2015, https://doi.org/10.1007/s11071-014-1320-6
- On-line structural damage localization and quantification using wireless sensors vol.20, pp.10, 2011, https://doi.org/10.1088/0964-1726/20/10/105025
- Real-time substructural identification by boundary force modeling vol.25, pp.5, 2018, https://doi.org/10.1002/stc.2151
- Wireless sensor networks for long-term structural health monitoring vol.6, pp.3, 2008, https://doi.org/10.12989/sss.2010.6.3.263
- Finite element model updating of Kömürhan highway bridge based on experimental measurements vol.6, pp.4, 2008, https://doi.org/10.12989/sss.2010.6.4.373
- Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements vol.6, pp.5, 2008, https://doi.org/10.12989/sss.2010.6.5_6.711
- A wireless guided wave excitation technique based on laser and optoelectronics vol.6, pp.5, 2008, https://doi.org/10.12989/sss.2010.6.5_6.749
- Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge vol.6, pp.8, 2008, https://doi.org/10.12989/sss.2010.6.8.939
- Output-only modal identification approach for time-unsynchronized signals from decentralized wireless sensor network for linear structural systems vol.7, pp.1, 2011, https://doi.org/10.12989/sss.2011.7.1.059
- Bio-inspired neuro-symbolic approach to diagnostics of structures vol.7, pp.3, 2008, https://doi.org/10.12989/sss.2011.7.3.229
- Emergent damage pattern recognition using immune network theory vol.8, pp.1, 2011, https://doi.org/10.12989/sss.2011.8.1.069
- Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters vol.137, pp.2, 2008, https://doi.org/10.1115/1.4029076
- Nonlinear damage detection using linear ARMA models with classification algorithms vol.26, pp.1, 2008, https://doi.org/10.12989/sss.2020.26.1.023