References
- Bernal, D. (2002), "Load vectors for damage localization", J. Eng. Mech. ASCE, 128(1), 7-14. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(7)
- Bernal, D. (2004), "Modal scaling from known mass perturbations", J. Eng. Mech. ASCE, 130(9), 1083-1088. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:9(1083)
- Brincker, R., Zhang, L. M. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10(3), 441-445. https://doi.org/10.1088/0964-1726/10/3/303
- Brinker, R. and Andersen, P. (2002), "A way of getting scaled mode shapes in output-only modal testing", 21th Modal Analysis Conf. (IMAC XXI), Paper No. 141 (CD-Rom), Orlando, FL.
- Doebling, S. W., Farrar, C. R., Prime, M. B. and Shevitz, D. W. (1996), Damage Identification and Health Monitoring of Structural and Mechanical Systems from changes in their Vibration Characteristics: A Literature Review. Los Alamos National Laboratory Report LA-13070-MS.
- Duan, Z. D., Yan, G. R., Ou, J. P. and Spencer, B. F. (2005), "Damage localization in ambient vibration by constructing proportional flexibility matrix", J. Sound. Vib., 284(1-2), 455-466. https://doi.org/10.1016/j.jsv.2004.06.046
- Gao, Y., Spencer, B. F. and Ruiz-Sandoval, M. (2006), "Distributed computing strategy for structural health monitoring", Struct. Cont. Health Monit., 13(1), 488-507. https://doi.org/10.1002/stc.117
- Kim, B. H., Joo, H. J. and Park, T. (2007), "Damage evaluation of an axially loaded beam using modal flexibility", J. Korean Society of Civil Eng., 11(2), 101-110.
- Lee, J. J. and Yun, C. B. (2007), "Damage localization for bridges using probabilistic neural networks", J. Korean Society of Civil Eng., 11(2), 111-120.
- Madhwesh, R. and Ahmet, E. A. (1992), "Flexibility by multireference impact testing for bridge diagnostics", J. Struct. Eng., 118(8), 2186-2203. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2186)
- Ni, Y. Q., Zhou, H. F., Chan, K. C. and Ko, J. M. (2008), "Modal flexibility analysis of cable-stayed ting kau bridge for damage identification", Comput. Aid. Civ. Infrastr. Eng., 23(3), 223-236. https://doi.org/10.1111/j.1467-8667.2008.00521.x
- Pandey, A. K. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound. Vib., 169(1), 3-17. https://doi.org/10.1006/jsvi.1994.1002
- Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: A review", J. Dynamic Sys. Measurement Control-Transactions, ASME, 123(4), 659-667. https://doi.org/10.1115/1.1410370
- Toksoy, T. and Aktan, A. E. (1994), "Bridge-condition assessment by modal flexibility", Experimental Mech., 34(3), 271-278. https://doi.org/10.1007/BF02319765
- Yan, A. M. and Golinval, J. C. (2005), "Structural damage localization by combining flexibility and stiffness methods", Eng. Struct., 27(12), 1752-1761. https://doi.org/10.1016/j.engstruct.2005.04.017
- Yi, J. H. and Yun, C. B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-466. https://doi.org/10.12989/sem.2004.17.3_4.445
- Zhang, Z. and Aktan, A. E. (1995), "The Damage Indices for the constructed facilities", The 13th International Modal Analysis Conference (IMAC), 1520-1529.
- Zhao, J. and DeWolf, J. T. (1999), "Sensitivity study for vibrational parameters used in damage detection", J. Struct. Eng. ASCE, 125(4), 410-416. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(410)
Cited by
- Structural model updating of steel box girder bridge using modal flexibility based deflections vol.7, pp.4, 2012, https://doi.org/10.3846/bjrbe.2012.34
- Noncontact laser ultrasonic crack detection for plates with additional structural complexities vol.12, pp.5-6, 2013, https://doi.org/10.1177/1475921713500515
- A multi-scale sensing and diagnosis system combining accelerometers and gyroscopes for bridge health monitoring vol.23, pp.1, 2014, https://doi.org/10.1088/0964-1726/23/1/015005
- Overall damage identification of flag-shaped hysteresis systems under seismic excitation vol.16, pp.1, 2015, https://doi.org/10.12989/sss.2015.16.1.163
- A new method to detect cracks in plate-like structures with though-thickness cracks vol.14, pp.3, 2014, https://doi.org/10.12989/sss.2014.14.3.397
- Damage detection of shear buildings using deflections obtained by modal flexibility vol.19, pp.11, 2010, https://doi.org/10.1088/0964-1726/19/11/115026
- Model-based identification of damage from sparse sensor measurements using Neumann series expansion vol.25, pp.2, 2017, https://doi.org/10.1080/17415977.2016.1160393
- Structural Damage Localization by the Principal Eigenvector of Modal Flexibility Change vol.9, pp.4, 2016, https://doi.org/10.3390/a9020024
- Feasibility study on an angular velocity-based damage detection method using gyroscopes vol.25, pp.7, 2014, https://doi.org/10.1088/0957-0233/25/7/075009
- Truncation error analysis on modal flexibility-based deflections: application to mass regular and irregular structures vol.142, 2017, https://doi.org/10.1016/j.engstruct.2017.03.057
- Smart sensing, monitoring, and damage detection for civil infrastructures vol.15, pp.1, 2011, https://doi.org/10.1007/s12205-011-0001-y
- Modal flexibility-based damage detection of cantilever beam-type structures using baseline modification vol.333, pp.18, 2014, https://doi.org/10.1016/j.jsv.2014.04.056
- The application of modal filters for damage detection vol.6, pp.2, 2008, https://doi.org/10.12989/sss.2010.6.2.115
- Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses vol.6, pp.5, 2008, https://doi.org/10.12989/sss.2010.6.5_6.461
- A simple method to detect cracks in beam-like structures vol.9, pp.4, 2008, https://doi.org/10.12989/sss.2012.9.4.335
- Output-only damage detection in buildings using proportional modal flexibility-based deflections in unknown mass scenarios vol.167, pp.None, 2008, https://doi.org/10.1016/j.engstruct.2018.04.036
- FEM Free Damage Detection of Beam Structures Using the Deflections Estimated by Modal Flexibility Matrix vol.21, pp.9, 2021, https://doi.org/10.1142/s0219455421501285