참고문헌
- Barai, S. V. and Pandey, P. C. (1995), "Vibration signature analysis using artificial neural networks", ASCE, J. Comput. Civ. Eng., 9(4), 259-265. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(259)
- Bendat, J. S. and Piersol, A. G. (1991), Random Data Analysis and Measurement Procedures, John Wiley & Sons, Singapore.
- Brinker, R., Zhang, L and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10, 441-445. https://doi.org/10.1088/0964-1726/10/3/303
- Catbas, F. N. and Aktan, A. M. (2002), "Condition and damage assessment: issues and some promising indices", ASCE, J. Struct. Eng., 128(8), 1026-1036. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1026)
- Chen, Y. and Feng, M. Q. (2005), "Condition assessment of bridge sub-structure by vibration monitoring", 2nd International Workshop on Advanced Smart Materials and Smart Structures Technology, Co-edited by C.B. Yun and B. F. Spencer, Gyeongju, Korea, 21-24 July, 651-676.
- Doebling, S. W., Farrar, C. R. and Prime, M. B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Gao, Y. and Spencer, B. F. (2002), "Damage localization under ambient vibration using changes in flexibility", J. Earthq. Eng. Earthq. Vib., 1(1), 136-144. https://doi.org/10.1007/s11803-002-0017-x
- Hao, H. and Xia, Y. (2002), "Vibration-based damage detection of structures by genetic algorithm", J. Comput. Civ. Eng., 16(3), 222-229. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
- Jang, C. and Imregun, M. (2001), "Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection", J. Sound. Vib., 242(5), 813-827. https://doi.org/10.1006/jsvi.2000.3390
- Kim, J. T. and Stubbs, N. (1995), "Model uncertainty impact and damage-detection accuracy in plate-girder", ASCE, J. Struct. Eng., 121(10), 1409-1417. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1409)
- Kim, J. T., Ryu, Y. S., Cho, H. M. and Stubbs, N. (2003), "Damage identification in beam-type structures: frequency-based method vs mode-shape-based method", Eng. Struct., 25, 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
- Kim, J. T., Park, J. H., Do, H. S. and Lee, Y. H. (2006), "Real-time damage monitoring using output-only acceleration data", Asia-Pacific Workshop on Structural Health Monitoring, Edited by A. Mita at Keio Univ., Yokohama, Japan, 2-4 December, 404-411.
- Kim, J. T., Park, J. H., Yoon, H. S. and Yi, J. H. (2007), "Vibration-based damage detection in beams using genetic algorithms", Smart Struct. Sys., 3(3), 263-280. https://doi.org/10.12989/sss.2007.3.3.263
- Lee, I. W., Oh, J. W., Park, S. K. and Kim, J. T. (1999), "Damage assessment of steel box-girder bridge using neural networks", J. Korean Society of Steel Construction, 11(1), 79-88.
- Lee, J. J., Lee, J. W., Yi, J. H., Yun, C. B. and Jung, J. Y. (2005), "Neural networks-based damage detection for bridges considering errors in baseline finite element models", J. Sound. Vib., 280(3), 555-578. https://doi.org/10.1016/j.jsv.2004.01.003
- Ni, Y. Q., Wang, B. S. and Ko, J. M. (2002), "Constructing input vectors to neural networks for structural damage identification", Smart Mater. Struct., 11, 825-833. https://doi.org/10.1088/0964-1726/11/6/301
- Szewczyk, Z. P. and Hajela, P. (1994), "Damage detection in structures based on feature-sensitive neural networks", ASCE, J. Comput. Civ. Eng., 8(2), 163-178. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(163)
- Wu, X., Ghaboussi, J. and Garret Jr., J. H. (2001), "Use of neural networks in detection of structural damage", Comput. Struct., 42(4), 649-659.
- Yi, J. H. and Yun, C. B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-466. https://doi.org/10.12989/sem.2004.17.3_4.445
- Yang, J. N., Pan, S. and Huang, H. (2007), "An adaptive extended Kalman filter for structural damage identifications II: unknown inputs", Struct. Control. Health Monitoring, 14(3), 497-521. https://doi.org/10.1002/stc.171
- Yun, C. B. and Bhang, E. Y. (2001), "Joint damage assessment of Framed Structures using Neural Networks Technique", Eng. Struct., 23(5), 425-435. https://doi.org/10.1016/S0141-0296(00)00067-5
피인용 문헌
- Multiscale Acceleration-Dynamic Strain-Impedance Sensor System for Structural Health Monitoring vol.8, pp.10, 2012, https://doi.org/10.1155/2012/709208
- Prediction on the fatigue life of butt-welded specimens using artificial neural network vol.9, pp.6, 2009, https://doi.org/10.12989/scs.2009.9.6.557
- A new method to detect cracks in plate-like structures with though-thickness cracks vol.14, pp.3, 2014, https://doi.org/10.12989/sss.2014.14.3.397
- Structural damage identification based on genetically trained ANNs in beams vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.227
- Fault detection via nonlinear profile monitoring using artificial neural networks vol.34, pp.6, 2018, https://doi.org/10.1002/qre.2318
- A simple method to detect cracks in beam-like structures vol.9, pp.4, 2008, https://doi.org/10.12989/sss.2012.9.4.335
- Damage detection in beam-type structures via PZT's dual piezoelectric responses vol.11, pp.2, 2008, https://doi.org/10.12989/sss.2013.11.2.217
- An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA vol.25, pp.5, 2008, https://doi.org/10.12989/sss.2020.25.5.605
- Accelerated Monte Carlo analysis of flow-based system reliability through artificial neural network-based surrogate models vol.26, pp.2, 2008, https://doi.org/10.12989/sss.2020.26.2.175
- Accelerated System-Level Seismic Risk Assessment of Bridge Transportation Networks through Artificial Neural Network-Based Surrogate Model vol.10, pp.18, 2008, https://doi.org/10.3390/app10186476