DOI QR코드

DOI QR Code

Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint

  • Li, Xin (Department of Civil & Environmental Engineering, Lehigh University) ;
  • Zhang, Yunfeng (Department of Civil & Environmental Engineering, University of Maryland)
  • Received : 2007.03.28
  • Accepted : 2007.12.14
  • Published : 2008.09.25

Abstract

This paper presents a feasibility study of flexible piezoelectric paint for use in wide-band low-profile surface-mount or embeddable ultrasonic sensor for in situ structural health monitoring. Piezoelectric paint is a piezoelectric composite with 0-3 connectivity. Because of its ease of application, piezoelectric paint can be readily fabricated into sensing element with complex pattern. This study examines the characteristics of piezoelectric paint in acoustic emission signal and ultrasonic guided wave sensing. A series of ultrasonic tests including pitch catch and pencil break tests were performed to validate the ultrasonic wave sensing capability of piezoelectric paint. The results of finite element simulation of ultrasonic wave propagation, and acoustic emission generated by a pencil lead break on an aluminum plate are also presented in this paper along with corresponding experimental data. Based on the preliminary experimental results, the piezoelectric paint appears to offer a promising sensing material for use in real-time monitoring of crack initiation and propagation in both metallic and composite structures.

Keywords

References

  1. Akdogan, E. K., Allahverdi, M. and Safari, A. (2005). "Piezoelectric composites for sensor and actuator applications," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(5), 746-775. https://doi.org/10.1109/TUFFC.2005.1503962
  2. Ayres, J. W., Lalande, F., Chaudhry, Z. and Rogers, C. A. (1998), "Qualitative impedance based health monitoring of civil infrastructures", Smart Mater. Struct., 7(5), 599-605. https://doi.org/10.1088/0964-1726/7/5/004
  3. Badcock, R. A. and Birt, E. A. (2000), "The use of 0-3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fiber composites", Smart Mater. Struct., 9, 291-297. https://doi.org/10.1088/0964-1726/9/3/307
  4. Breckenridge, F. R., Proctor, T. M., Hsu, N. N., Frick, S. E. and Eitzen, D. G., (1990), "Transient source for acoustic emission work", Progress in Acoustic Emission V, eds. Yamaguchi, K. et al, Japanese Society for NDI, Tokyo, 20-37.
  5. Chilton, J. A. (1995), "Electroactive composites", Special Polymers for Electronics & Optoelectronics, Edited by J.A. Chilton, M.T. Goosey, Chapman & Hall, London, 1995.
  6. Crawley, E. F. and de Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25(10), 1373-1385. https://doi.org/10.2514/3.9792
  7. Damjanovic, D., Muralt, P. and Setter, N. (2001), "Ferroelectric sensors", IEEE Sensors J., 1(3), 191-206. https://doi.org/10.1109/JSEN.2001.954832
  8. Egusa, S. and Iwasawa, N. (1993), "Piezoelectric paints: preparation and application as built-in vibration sensors of structural materials", J. Mater. Sci., 28, 1667-1672. https://doi.org/10.1007/BF00363366
  9. Egusa, S. and Iwasawa, N. (1996), "Application of piezoelectric paints to damage detection in structural materials", J. Reinforced Plastics and Composites, 15, 806-817.
  10. Egusa, S. and Iwasawa, N. (1998), "Piezoelectric paints as one approach to smart structural materials with health-monitoring capabilities", Smart Mater. Struct., 7, 438-445. https://doi.org/10.1088/0964-1726/7/4/002
  11. Gautschi, G. (2002), Piezoelectric Sensorics, Springer-Verlag, Berlin,Germany.
  12. Giurgiutiu, V. (2003), "Embedded ultrasonics NDE with piezoelectric wafer active sensors", J. Instrumentation, Mesure, Metrologie, Lavoisier Pub., Paris, France, RS series 12M, 3(3-4), 149-180.
  13. Guirgiutiu, V. (2005), "Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring", J. Intell. Mater. Sys. Struct., 16, 291-305. https://doi.org/10.1177/1045389X05050106
  14. Grosse, C. U. and Ohtsu, M. (Eds.) (2008), Acoustic Emission Testing: Basics for Research - Applications in Civil Engineering. Springer Publisher, Heidelberg, Germany.
  15. Hale, J. M. and Tuck, J. (1999), "A novel thick-film strain transducer using piezoelectric paint", Proc. Inst. Mech. Engrs., Part C, 213, 613-622. https://doi.org/10.1243/0954406991522545
  16. Hamstad, M. A., Gary, J. and O'Gallagher, A., (1996), "Far-field acoustic emission waves by three-dimensional finite element modeling of pencil-lead breaks on a thick plate", J. Acoustic Emission, 14(2), 103-114.
  17. Hanner, K. A., Safari, A., Newnham, R. E. and Runt, J. (1989), "Thin film 0-3 polymer/piezoelectric ceramic composites: piezoelectric paints", Ferroelectrics, 100, 255-260. https://doi.org/10.1080/00150198908007920
  18. IEEE Standard on Piezoelectricity. (1987), ANSI/IEEE, Standard 176.
  19. Ihn, J.-B. and Chang, F. K. (2004), "Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. Validation using riveted joints and repair patches", Smart Mater. Struct. 13, 621-630. https://doi.org/10.1088/0964-1726/13/3/021
  20. Ikeda, T. 1990. Fundamentals of Piezoelectricity, Oxford University Press, Oxford, UK.
  21. Kessler, S. S. (2002), Piezoelectric-Based In-Situ Damage Detection of Composite Materials for Structural Health Monitoring Systems. PhD Thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics.
  22. Kobayashi, M., Jen, C-K, Moisan, J. F., Mrad, N. and Nguyen, S. B. (2007), "Integrated ultrasonic transducers made by the sol-gel spray technique for structural health monitoring", Smart Mater. Struct. 16, 317-322. https://doi.org/10.1088/0964-1726/16/2/009
  23. Lahtinen, R., Muukkonen, T., Koskinen, J., Hannula, S-P. and Heczko, O. (2007). "A piezopaint-based sensor for monitoring structure dynamics", Smart Mater. Struct., 16, 2571-2576 https://doi.org/10.1088/0964-1726/16/6/061
  24. Lee, C.-K, (1990), "Theory of laminated piezoelectric plates for design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships", J. Acoust. Soc. Am., 87(3), 1144-1158. https://doi.org/10.1121/1.398788
  25. Lee, C.-K and O'Sullivan, T. C., (1991), "Piezoelectric strain rate gage", J. Acoust. Soc. Am., 90(2), 945-953. https://doi.org/10.1121/1.401961
  26. Lee, B. C. and Staszewski, W. J. (2003). "Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation", Smart Mater. Struct. 12, 804-814. https://doi.org/10.1088/0964-1726/12/5/018
  27. Lin, B. and Giurgiutiu, V., (2006), "Modeling and testing of PZT and PVDF piezoelectric wafer active sensors", Smart Mater. Struct. 15, 1085-1093. https://doi.org/10.1088/0964-1726/15/4/022
  28. Marin-Franch, P., Martin, T., Fernandez-Perez, O., Tunnicliffe, D. L. and Das-Gupta, D. K. (2004), "Evaluation of PTCa/PEKK composites for acoustic emission detection", IEEE Transactions on Dielectrics and Electrical Insulation, 11(1), 50-55. https://doi.org/10.1109/TDEI.2004.1266316
  29. Misiti, M., Misiti, Y., Oppenheim, G. and Poggi, J. M., (2000), Wavelet Toolbox for Use with MATLAB, User's Guide, The MathWorks, Inc. MA, USA.
  30. Newnham, R. E., Skinner, D. P. and Cross, L. E. (1978), "Connectivity and piezoelectric-pyroelectric composites", Mat. Res. Bull, 13, 525-536. https://doi.org/10.1016/0025-5408(78)90161-7
  31. Nieuwenhuis, J. H., et al. (2005), "Generation and detection of guided waves using PZT wafer transducers", IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 52(11), 2103-2111. https://doi.org/10.1109/TUFFC.2005.1561681
  32. Niezrecki, C., Brei, D., Balakrishnan, S. and Moskalik, A. (2001), "Piezoelectric actuation: state of the art", The Shock Vib. Digest, 33(4), 269-28. https://doi.org/10.1177/058310240103300401
  33. Piefort, V. (2001), "Finite element modeling of piezoelectric active structures", PhD Thesis, Universite Libre de Bruxelles.
  34. Park, G., Sohn, H., Farrar, C. R. and Inman, D. J. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", The Shock Vib. Digest, 35(6), 451-463. https://doi.org/10.1177/05831024030356001
  35. Polla, D. L. and Francis, L. F. (1998), "Processing and characterization of piezoelectric materials and integration into microelectromechanical systems," Annu. Rev. Mater. Sci., 28, 563-97. https://doi.org/10.1146/annurev.matsci.28.1.563
  36. Rose, J. L. (1999), Ultrasonic waves in solid media, Cambridge University Press, Cambridge.
  37. Rose, J. L. (2002), "A baseline and vision of ultrasonic guided wave inspection potential", Trans. of ASME Journal of Pressure Vessel Technology, 124, 273-282. https://doi.org/10.1115/1.1491272
  38. Safari, A. (1994), "Development of piezoelectric composites for transducer", J. Phys. III France, 4, 1129-1149. https://doi.org/10.1051/jp3:1994191
  39. Sakamoto, W. K., de Souza, E. and Das-Gupta, D. K. (2001a), "Electroactive properties of flexible piezoelectric composites", Mater. Res., 4(3), 201-204. https://doi.org/10.1590/S1516-14392001000300010
  40. Sakamoto, W. K., Marin-Franch, P., Tunnicliffe, D. and Das-Gupta, D. K. (2001b), "Lead zirconate titanate / polyurethane (PZT/PU) composite for acoustic emission sensors", IEEE Annual Conference on Electrical Insulation and Dielectric Phenomena, 2001, 20-23.
  41. Sirohi, J. and Chopra, I. (2000), "Fundamental understanding of piezoelectric strain sensors", J. Intelligent Mater. Sys. Struct., 11(4), 246-257. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
  42. Viktorov, I. A. (1967), Rayleigh and Lamb Waves - Physical Theory and Applications, Plenum Press, New York.
  43. Wang, X. D. and Huang, G. L. (2006), "The coupled dynamic behavior of piezoelectric sensors bonded to elastic media", J. Intell. Mater. Sys. Struct., 17, 883-894. https://doi.org/10.1177/1045389X06061130
  44. Wenger, M. P., Blanas, P., Shuford, R. J. and Das-Gupta, D. K. (1996), "Acoustic emission signal detection by ceramic/polymer composite piezoelectrets embedded in glass-epoxy laminates", Poly. Eng. Sci., 36(24), 2945-2954. https://doi.org/10.1002/pen.10696
  45. White, J. R., de Poumeyrol, B., Hale, J. M. and Stephenson, R. (2004), "Piezoelectric paint: Ceramic-polymer composites for vibration sensors", J. Mater. Sci., 39(9), 3105-3114. https://doi.org/10.1023/B:JMSC.0000025839.98785.b9
  46. Zhang, Y. (2006), "In-situ fatigue crack detection using piezoelectric paint sensor", J. Intell. Mater. Sys. Struct., 17(10), 843-852. https://doi.org/10.1177/1045389X06059957
  47. Zhang, Y. and Li, X. (2006), "Piezoelectric paint sensor for fatigue crack monitoring in steel structures", Proc. US-Korea Workshop on Smart Structures Technology for Steel Structures, Seoul, Korea, November 16-17, 2006.
  48. Zhang, Y. (2008), "Piezoelectric paint sensors for ultrasonics-based damage detection", Encyclopedia of Structural Health Monitoring. Edited by C. Boller, F.-K. Chang and Y. Fujino, John Wiley & Sons, Ltd. ISBN: 978-0-470-05822-0.

Cited by

  1. 09.11: Acoustic emission signal characteristics of damage accumulation in non-buckling steel plate shear wall vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.292
  2. Near-Field Acoustic Emission Sensing Performance of Piezoelectric Film Strain Sensor vol.25, pp.1, 2014, https://doi.org/10.1080/09349847.2013.810318
  3. Analytical study of piezoelectric paint sensor for acoustic emission-based fracture monitoring vol.31, pp.8, 2008, https://doi.org/10.1111/j.1460-2695.2008.01249.x
  4. Structural Health Monitoring of Composites Using Integrated and Flexible Piezoelectric Ultrasonic Transducers vol.20, pp.8, 2009, https://doi.org/10.1177/1045389X08101563
  5. Stochastic optimal control analysis of a piezoelectric shell subjected to stochastic boundary perturbations vol.9, pp.3, 2012, https://doi.org/10.12989/sss.2012.9.3.231
  6. Deep learning based crack damage detection technique for thin plate structures using guided lamb wave signals vol.29, pp.1, 2008, https://doi.org/10.1088/1361-665x/ab58d6