참고문헌
- Akle, B. J., Bannett, M. D. and Leo, D. (2006), "High strain ionomeric-ionic liquid electroactive actuators, This paper came out: so more infor is provided herein", Sensors and Actuators: A. 126(1), 26 January, p. 173-181. https://doi.org/10.1016/j.sna.2005.09.006
- Bar-Cohen, Y., Bao, X., Sherrit, S. and Lih, S.-S. (2002), "Characterization of the electromechanical properties of ionomeric polymer metal composite", Proceedings of the SPIE Smart Structures and Materials Symposium, EAPAD Conference, San Diego, CA.
- Bar-Cohen, Y. (2002), "Electro-active polymers: Current capabilities and challenges", Proceedings of SPIE the international society for optical engineering, 4695, 1-7.
- Bonomo, C., Negro, C. D., Fortuna, L. and Graziani, S. (2003), "Characterization of IPMC strip sensorial properties: preliminary results", Proceedings of International Symposium on Circuits and Systems, IV-816-IV-819.
- Dogruer D. (2006), "The development of a hydrodynamic model for the segmented ionic polymer metal composite (IPMC) for underwater applications and the potential use of IPMCs for energy harvesting", M.S. Thesis, University of Nevada, Reno, NV, U.S.A.
- Kim, K. J., Paquette, J., Leo, D. and Farinholt, K. M. (2006), "Ionic polymer metal composite for sensory applications", Encyclopedia of Sensors, 1-20.
- Konyo, M., Konishi, Y., Tadokoro, S. and Kishima, T. (2004), "Development of velocity sensor using ionic polymer metal composites", Proceedings of the SPIE, 5385, 394.
- Kothera, C. S. (2002), "Micro-manipulation and bandwidth characterization of ionic polymer actuators", Masters Thesis, Virginia, Blacksburg.
- Lee, S., Park, H. C. and Kim, K. J. (2005), "Equivalent modeling of ionic polymer metal composite actuators based on beam theory", Smart Mater. Struct., 14, 1363-1368. https://doi.org/10.1088/0964-1726/14/6/028
- Martin, B. R. (2005), "Energy harvesting applications of ionic polymer", Master Thesis, Virginia, Blacksburg.
- Newbury, K. (2002), "Characterization, modeling, and control of ionic polymer transducers", PhD Thesis, Virginia Tech, Blacksburg, VA.
- Newbury, K. and Leo, D. J. (2002), "Electromechanical modeling and characterization of ionic polymer benders", J. Intell. Mater. Syst. Struct., 13, 51-60. https://doi.org/10.1177/1045389X02013001978
- Paradiso, J. A. and Starner, T. (2005), "Energy scavenging for mobile and wireless electronics", IEEE Pervasive Comput., 4(1), 18-27.
- Shahinpoor, M. and Kim, K. J. (2005), "Ionic polymer metal composites IV: industrial and mechanical application", Smart Mater. Struct., 14, 197-214. https://doi.org/10.1088/0964-1726/14/1/020
- Sodano, H. A., Inman, D. J. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", The Shock Vib. Digest, 36 (3), 197-205. https://doi.org/10.1177/0583102404043275
피인용 문헌
- Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes vol.19, pp.4, 2010, https://doi.org/10.1088/0964-1726/19/4/045026
- Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites vol.109, pp.8, 2011, https://doi.org/10.1063/1.3569738
- Soft wearable ionic polymer sensors for palpatory pulse-rate extraction vol.270, 2018, https://doi.org/10.1016/j.sna.2017.12.041
- Variable Thickness IPMC: Capacitance Effect on Energy Harvesting vol.1129, 2008, https://doi.org/10.1557/PROC-1129-V06-05
- Scale-like compliant gold electrode: Towards high strain capacitive devices for energy harvesting vol.211, 2014, https://doi.org/10.1016/j.sna.2014.02.034
- Ionic electroactive polymer metal composites: Fabricating, modeling, and applications of postsilicon smart devices vol.51, pp.9, 2013, https://doi.org/10.1002/polb.23255
- Structurally embedded reflectors and mirrors for elastic wave focusing and energy harvesting vol.122, pp.16, 2017, https://doi.org/10.1063/1.5008724
- Energy harvesting from human motion: materials and techniques vol.45, pp.20, 2016, https://doi.org/10.1039/C5CS00812C
- A Review of Ionic Polymeric Soft Actuators and Sensors vol.1, pp.1, 2014, https://doi.org/10.1089/soro.2013.0006
- Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites vol.79, pp.4, 2009, https://doi.org/10.1103/PhysRevE.79.041503
- Prediction of the ionic polymer transducer sensing of shear loading vol.20, pp.9, 2011, https://doi.org/10.1088/0964-1726/20/9/094013
- Experimental and theoretical investigation of ionic polymer transducers in shear sensing vol.26, pp.15, 2015, https://doi.org/10.1177/1045389X14546779
- Ionic polymer–metal composite applications vol.5, pp.1, 2016, https://doi.org/10.1680/jemmr.15.00026
- A Novel Ionic Polymer Metal ZnO Composite (IPMZC) vol.11, pp.12, 2011, https://doi.org/10.3390/s110504674
- Disc-shaped ionic polymer metal composites for use in mechano-electrical applications vol.19, pp.6, 2010, https://doi.org/10.1088/0964-1726/19/6/065016
- Electroactive polymer actuator based on a reduced graphene electrode vol.64, pp.5, 2014, https://doi.org/10.3938/jkps.64.623
- Effect of hydrodynamic interaction on energy harvesting in arrays of ionic polymer metal composites vibrating in a viscous fluid vol.23, pp.4, 2014, https://doi.org/10.1088/0964-1726/23/4/045015
- Energy harvesting from base excitation of ionic polymer metal composites in fluid environments vol.19, pp.1, 2010, https://doi.org/10.1088/0964-1726/19/1/015003
- A physics-based model of the electrical impedance of ionic polymer metal composites vol.111, pp.12, 2012, https://doi.org/10.1063/1.4729051
- Optimization of the power flow extracted from a flexible structure using a control approach vol.18, pp.4, 2011, https://doi.org/10.1002/stc.374
- Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite vol.97, pp.24, 2010, https://doi.org/10.1063/1.3517447
- Matching the impedance of ionic polymer metal composites for energy harvesting vol.23, pp.12, 2014, https://doi.org/10.1088/0964-1726/23/12/127002
- Electrical impedance controls mechanical sensing in ionic polymer metal composites vol.88, pp.6, 2013, https://doi.org/10.1103/PhysRevE.88.062603
- Extremely low-loss rectification methodology for low-power vibration energy harvesters vol.22, pp.6, 2013, https://doi.org/10.1088/0964-1726/22/6/062001
- Underwater energy harvesting from a turbine hosting ionic polymer metal composites vol.23, pp.8, 2014, https://doi.org/10.1088/0964-1726/23/8/085023
- Bias-dependent model of the electrical impedance of ionic polymer-metal composites vol.87, pp.2, 2013, https://doi.org/10.1103/PhysRevE.87.022403
- Mechanics and electrochemistry of ionic polymer metal composites vol.71, 2014, https://doi.org/10.1016/j.jmps.2014.07.006
- Energy harvesting from underwater vibration of an annular ionic polymer metal composite vol.50, pp.11, 2015, https://doi.org/10.1007/s11012-015-0165-5
- Energy applications of ionic liquids vol.2, pp.9, 2009, https://doi.org/10.1039/b906273d
- Effect of electrode surface roughness on the electrical impedance of ionic polymer–metal composites vol.21, pp.10, 2012, https://doi.org/10.1088/0964-1726/21/10/105030
- Energy exchange between a vortex ring and an ionic polymer metal composite vol.100, pp.11, 2012, https://doi.org/10.1063/1.3693184
- Introduction to the themed articles on ionic polymer–metal composites vol.3, pp.3, 2012, https://doi.org/10.1080/19475411.2012.702138
- Hydrodynamics of underwater propulsors based on ionic polymer–metal composites: a numerical study vol.18, pp.8, 2009, https://doi.org/10.1088/0964-1726/18/8/085006
- Energy harvesting from underwater torsional vibrations of a patterned ionic polymer metal composite vol.22, pp.5, 2013, https://doi.org/10.1088/0964-1726/22/5/055027
- Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives vol.59, pp.3, 2010, https://doi.org/10.1002/pi.2759
- Nonlinear sensing of ionic polymer metal composites vol.25, pp.2-4, 2013, https://doi.org/10.1007/s00161-012-0253-x
- Energy harvesting from fluid-induced buckling of ionic polymer metal composites vol.25, pp.12, 2014, https://doi.org/10.1177/1045389X13508333
- Interaction of a vortex pair with a flexible plate in an ideal quiescent fluid vol.23, pp.13, 2012, https://doi.org/10.1177/1045389X11435995
- Energy harvesting from a vortex ring impinging on an annular ionic polymer metal composite vol.23, pp.7, 2014, https://doi.org/10.1088/0964-1726/23/7/074014
- Recent advances in ionic polymer–metal composite actuators and their modeling and applications vol.38, pp.7, 2013, https://doi.org/10.1016/j.progpolymsci.2013.04.003
- Giant Displacements in IPMC-Based Structures: A Preliminary Study vol.745, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.745.119
- Active Tube-Shaped Actuator with Embedded Square Rod-Shaped Ionic Polymer-Metal Composites for Robotic-Assisted Manipulation vol.2018, pp.1754-2103, 2018, https://doi.org/10.1155/2018/4031705
- Analytical solution and numerical validation of piezoelectric energy harvester patch for various thin multilayer composite plates vol.88, pp.7, 2018, https://doi.org/10.1007/s00419-018-1363-0
- and glycerol on response performance of biological gel electric actuator vol.5, pp.6, 2018, https://doi.org/10.1088/2053-1591/aac809
- A dragonfly inspired flapping wing actuated by electro active polymers vol.6, pp.7, 2008, https://doi.org/10.12989/sss.2010.6.7.867
- Analysis and simulation of multi-mode piezoelectric energy harvesters vol.9, pp.6, 2012, https://doi.org/10.12989/sss.2012.9.6.549
- An IPMC-enabled bio-inspired bending/twisting fin for underwater applications vol.22, pp.1, 2008, https://doi.org/10.1088/0964-1726/22/1/014003
- IPMC as a mechanoelectric energy harvester: tailored properties vol.22, pp.1, 2008, https://doi.org/10.1088/0964-1726/22/1/015017
- Dynamic modeling and control of IPMC hydrodynamic propulsor vol.20, pp.4, 2008, https://doi.org/10.12989/sss.2017.20.4.499
- Investigation into the bending force performance of the Chitosan based electric actuator manufactured by freeze-drying vol.6, pp.3, 2008, https://doi.org/10.1088/2053-1591/aaf356
- Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.113
- Validation of a model for an ionic electro-active polymer in the static case vol.29, pp.8, 2020, https://doi.org/10.1088/1361-665x/ab8fca
- Modeling and analysis of a taper ionic polymer metal composite energy harvester vol.9, pp.2, 2008, https://doi.org/10.1007/s41683-020-00060-3