DOI QR코드

DOI QR Code

Ionic polymer-metal composite as energy harvesters

  • Tiwari, Rashi (Department of Mechanical Engineering, University of Nevada) ;
  • Kim, Kwang J. (Department of Mechanical Engineering, University of Nevada) ;
  • Kim, Sang-Mun (Department of Mechanical Engineering, University of Nevada)
  • Received : 2007.05.01
  • Accepted : 2008.03.03
  • Published : 2008.09.25

Abstract

The ability of an electroactive polymer, IPMC (Ionic Polymer Metal Composites,) to produce electric charge under mechanical deformations may be exploited for the development of next generation of energy harvesters. Two different electrode types (gold and platinum) were employed for the experiments. The sample was tested under dynamic conditions, produced through programmed shaking. In order to evaluate the potential of IPMC for dry condition, these samples were treated with ionic liquid. Three modes of mechanical deformations (bending, tension and shear) were analyzed. Experimental results clearly indicate that IPMCs are attractive applicants for energy harvesting, with inherent advantages like flexibility, low cost, negligible maintenance and virtually infinite longevity. Besides, preliminary energy harvesting model of IPMC has been formulated based upon the work of previous investigators (Newbury 2002, Newbury and Leo 2002, Lee, et al. 2005, Konyo, et al. 2004) and the simulation results reciprocate experimental results within acceptable error.

Keywords

References

  1. Akle, B. J., Bannett, M. D. and Leo, D. (2006), "High strain ionomeric-ionic liquid electroactive actuators, This paper came out: so more infor is provided herein", Sensors and Actuators: A. 126(1), 26 January, p. 173-181. https://doi.org/10.1016/j.sna.2005.09.006
  2. Bar-Cohen, Y., Bao, X., Sherrit, S. and Lih, S.-S. (2002), "Characterization of the electromechanical properties of ionomeric polymer metal composite", Proceedings of the SPIE Smart Structures and Materials Symposium, EAPAD Conference, San Diego, CA.
  3. Bar-Cohen, Y. (2002), "Electro-active polymers: Current capabilities and challenges", Proceedings of SPIE the international society for optical engineering, 4695, 1-7.
  4. Bonomo, C., Negro, C. D., Fortuna, L. and Graziani, S. (2003), "Characterization of IPMC strip sensorial properties: preliminary results", Proceedings of International Symposium on Circuits and Systems, IV-816-IV-819.
  5. Dogruer D. (2006), "The development of a hydrodynamic model for the segmented ionic polymer metal composite (IPMC) for underwater applications and the potential use of IPMCs for energy harvesting", M.S. Thesis, University of Nevada, Reno, NV, U.S.A.
  6. Kim, K. J., Paquette, J., Leo, D. and Farinholt, K. M. (2006), "Ionic polymer metal composite for sensory applications", Encyclopedia of Sensors, 1-20.
  7. Konyo, M., Konishi, Y., Tadokoro, S. and Kishima, T. (2004), "Development of velocity sensor using ionic polymer metal composites", Proceedings of the SPIE, 5385, 394.
  8. Kothera, C. S. (2002), "Micro-manipulation and bandwidth characterization of ionic polymer actuators", Masters Thesis, Virginia, Blacksburg.
  9. Lee, S., Park, H. C. and Kim, K. J. (2005), "Equivalent modeling of ionic polymer metal composite actuators based on beam theory", Smart Mater. Struct., 14, 1363-1368. https://doi.org/10.1088/0964-1726/14/6/028
  10. Martin, B. R. (2005), "Energy harvesting applications of ionic polymer", Master Thesis, Virginia, Blacksburg.
  11. Newbury, K. (2002), "Characterization, modeling, and control of ionic polymer transducers", PhD Thesis, Virginia Tech, Blacksburg, VA.
  12. Newbury, K. and Leo, D. J. (2002), "Electromechanical modeling and characterization of ionic polymer benders", J. Intell. Mater. Syst. Struct., 13, 51-60. https://doi.org/10.1177/1045389X02013001978
  13. Paradiso, J. A. and Starner, T. (2005), "Energy scavenging for mobile and wireless electronics", IEEE Pervasive Comput., 4(1), 18-27.
  14. Shahinpoor, M. and Kim, K. J. (2005), "Ionic polymer metal composites IV: industrial and mechanical application", Smart Mater. Struct., 14, 197-214. https://doi.org/10.1088/0964-1726/14/1/020
  15. Sodano, H. A., Inman, D. J. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", The Shock Vib. Digest, 36 (3), 197-205. https://doi.org/10.1177/0583102404043275

Cited by

  1. Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes vol.19, pp.4, 2010, https://doi.org/10.1088/0964-1726/19/4/045026
  2. Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites vol.109, pp.8, 2011, https://doi.org/10.1063/1.3569738
  3. Soft wearable ionic polymer sensors for palpatory pulse-rate extraction vol.270, 2018, https://doi.org/10.1016/j.sna.2017.12.041
  4. Variable Thickness IPMC: Capacitance Effect on Energy Harvesting vol.1129, 2008, https://doi.org/10.1557/PROC-1129-V06-05
  5. Scale-like compliant gold electrode: Towards high strain capacitive devices for energy harvesting vol.211, 2014, https://doi.org/10.1016/j.sna.2014.02.034
  6. Ionic electroactive polymer metal composites: Fabricating, modeling, and applications of postsilicon smart devices vol.51, pp.9, 2013, https://doi.org/10.1002/polb.23255
  7. Structurally embedded reflectors and mirrors for elastic wave focusing and energy harvesting vol.122, pp.16, 2017, https://doi.org/10.1063/1.5008724
  8. Energy harvesting from human motion: materials and techniques vol.45, pp.20, 2016, https://doi.org/10.1039/C5CS00812C
  9. A Review of Ionic Polymeric Soft Actuators and Sensors vol.1, pp.1, 2014, https://doi.org/10.1089/soro.2013.0006
  10. Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites vol.79, pp.4, 2009, https://doi.org/10.1103/PhysRevE.79.041503
  11. Prediction of the ionic polymer transducer sensing of shear loading vol.20, pp.9, 2011, https://doi.org/10.1088/0964-1726/20/9/094013
  12. Experimental and theoretical investigation of ionic polymer transducers in shear sensing vol.26, pp.15, 2015, https://doi.org/10.1177/1045389X14546779
  13. Ionic polymer–metal composite applications vol.5, pp.1, 2016, https://doi.org/10.1680/jemmr.15.00026
  14. A Novel Ionic Polymer Metal ZnO Composite (IPMZC) vol.11, pp.12, 2011, https://doi.org/10.3390/s110504674
  15. Disc-shaped ionic polymer metal composites for use in mechano-electrical applications vol.19, pp.6, 2010, https://doi.org/10.1088/0964-1726/19/6/065016
  16. Electroactive polymer actuator based on a reduced graphene electrode vol.64, pp.5, 2014, https://doi.org/10.3938/jkps.64.623
  17. Effect of hydrodynamic interaction on energy harvesting in arrays of ionic polymer metal composites vibrating in a viscous fluid vol.23, pp.4, 2014, https://doi.org/10.1088/0964-1726/23/4/045015
  18. Energy harvesting from base excitation of ionic polymer metal composites in fluid environments vol.19, pp.1, 2010, https://doi.org/10.1088/0964-1726/19/1/015003
  19. A physics-based model of the electrical impedance of ionic polymer metal composites vol.111, pp.12, 2012, https://doi.org/10.1063/1.4729051
  20. Optimization of the power flow extracted from a flexible structure using a control approach vol.18, pp.4, 2011, https://doi.org/10.1002/stc.374
  21. Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite vol.97, pp.24, 2010, https://doi.org/10.1063/1.3517447
  22. Matching the impedance of ionic polymer metal composites for energy harvesting vol.23, pp.12, 2014, https://doi.org/10.1088/0964-1726/23/12/127002
  23. Electrical impedance controls mechanical sensing in ionic polymer metal composites vol.88, pp.6, 2013, https://doi.org/10.1103/PhysRevE.88.062603
  24. Extremely low-loss rectification methodology for low-power vibration energy harvesters vol.22, pp.6, 2013, https://doi.org/10.1088/0964-1726/22/6/062001
  25. Underwater energy harvesting from a turbine hosting ionic polymer metal composites vol.23, pp.8, 2014, https://doi.org/10.1088/0964-1726/23/8/085023
  26. Bias-dependent model of the electrical impedance of ionic polymer-metal composites vol.87, pp.2, 2013, https://doi.org/10.1103/PhysRevE.87.022403
  27. Mechanics and electrochemistry of ionic polymer metal composites vol.71, 2014, https://doi.org/10.1016/j.jmps.2014.07.006
  28. Energy harvesting from underwater vibration of an annular ionic polymer metal composite vol.50, pp.11, 2015, https://doi.org/10.1007/s11012-015-0165-5
  29. Energy applications of ionic liquids vol.2, pp.9, 2009, https://doi.org/10.1039/b906273d
  30. Effect of electrode surface roughness on the electrical impedance of ionic polymer–metal composites vol.21, pp.10, 2012, https://doi.org/10.1088/0964-1726/21/10/105030
  31. Energy exchange between a vortex ring and an ionic polymer metal composite vol.100, pp.11, 2012, https://doi.org/10.1063/1.3693184
  32. Introduction to the themed articles on ionic polymer–metal composites vol.3, pp.3, 2012, https://doi.org/10.1080/19475411.2012.702138
  33. Hydrodynamics of underwater propulsors based on ionic polymer–metal composites: a numerical study vol.18, pp.8, 2009, https://doi.org/10.1088/0964-1726/18/8/085006
  34. Energy harvesting from underwater torsional vibrations of a patterned ionic polymer metal composite vol.22, pp.5, 2013, https://doi.org/10.1088/0964-1726/22/5/055027
  35. Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives vol.59, pp.3, 2010, https://doi.org/10.1002/pi.2759
  36. Nonlinear sensing of ionic polymer metal composites vol.25, pp.2-4, 2013, https://doi.org/10.1007/s00161-012-0253-x
  37. Energy harvesting from fluid-induced buckling of ionic polymer metal composites vol.25, pp.12, 2014, https://doi.org/10.1177/1045389X13508333
  38. Interaction of a vortex pair with a flexible plate in an ideal quiescent fluid vol.23, pp.13, 2012, https://doi.org/10.1177/1045389X11435995
  39. Energy harvesting from a vortex ring impinging on an annular ionic polymer metal composite vol.23, pp.7, 2014, https://doi.org/10.1088/0964-1726/23/7/074014
  40. Recent advances in ionic polymer–metal composite actuators and their modeling and applications vol.38, pp.7, 2013, https://doi.org/10.1016/j.progpolymsci.2013.04.003
  41. Giant Displacements in IPMC-Based Structures: A Preliminary Study vol.745, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.745.119
  42. Active Tube-Shaped Actuator with Embedded Square Rod-Shaped Ionic Polymer-Metal Composites for Robotic-Assisted Manipulation vol.2018, pp.1754-2103, 2018, https://doi.org/10.1155/2018/4031705
  43. Analytical solution and numerical validation of piezoelectric energy harvester patch for various thin multilayer composite plates vol.88, pp.7, 2018, https://doi.org/10.1007/s00419-018-1363-0
  44. and glycerol on response performance of biological gel electric actuator vol.5, pp.6, 2018, https://doi.org/10.1088/2053-1591/aac809
  45. A dragonfly inspired flapping wing actuated by electro active polymers vol.6, pp.7, 2008, https://doi.org/10.12989/sss.2010.6.7.867
  46. Analysis and simulation of multi-mode piezoelectric energy harvesters vol.9, pp.6, 2012, https://doi.org/10.12989/sss.2012.9.6.549
  47. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications vol.22, pp.1, 2008, https://doi.org/10.1088/0964-1726/22/1/014003
  48. IPMC as a mechanoelectric energy harvester: tailored properties vol.22, pp.1, 2008, https://doi.org/10.1088/0964-1726/22/1/015017
  49. Dynamic modeling and control of IPMC hydrodynamic propulsor vol.20, pp.4, 2008, https://doi.org/10.12989/sss.2017.20.4.499
  50. Investigation into the bending force performance of the Chitosan based electric actuator manufactured by freeze-drying vol.6, pp.3, 2008, https://doi.org/10.1088/2053-1591/aaf356
  51. Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.113
  52. Validation of a model for an ionic electro-active polymer in the static case vol.29, pp.8, 2020, https://doi.org/10.1088/1361-665x/ab8fca
  53. Modeling and analysis of a taper ionic polymer metal composite energy harvester vol.9, pp.2, 2008, https://doi.org/10.1007/s41683-020-00060-3