DOI QR코드

DOI QR Code

Inductively coupled nanocomposite wireless strain and pH sensors

  • Loh, Kenneth J. (The University of Michigan) ;
  • Lynch, Jerome P. (The University of Michigan) ;
  • Kotov, Nicholas A. (The University of Michigan)
  • Received : 2007.03.23
  • Accepted : 2007.11.05
  • Published : 2008.09.25

Abstract

Recently, dense sensor instrumentation for structural health monitoring has motivated the need for novel passive wireless sensors that do not require a portable power source, such as batteries. Using a layer-by-layer self-assembly process, nano-structured multifunctional carbon nanotube-based thin film sensors of controlled morphology are fabricated. Through judicious selection of polyelectrolytic constituents, specific sensing transduction mechanisms can be encoded within these homogenous thin films. In this study, the thin films are specifically designed to change electrical properties to strain and pH stimulus. Validation of wireless communications is performed using traditional magnetic coil antennas of various turns for passive RFID (radio frequency identification) applications. Preliminary experimental results shown in this study have identified characteristic frequency and bandwidth changes in tandem with varying strain and pH, respectively. Finally, ongoing research is presented on the use of gold nanocolloids and carbon nanotubes during layer-by-layer assembly to fabricate highly conductive coil antennas for wireless communications.

Keywords

References

  1. Baughman, R. H., Zakhidov, A. A., and de Heer, W. A. (2002), "Carbon nanotubes - the route towards applications", Science, 297(5582), 787-792. https://doi.org/10.1126/science.1060928
  2. Bernhard, J. T., Hietpas, K., George, E., Kuchima, D., and Reis, H. (2003), "An interdisciplinary effort to develop a wireless embedded sensor system to monitor and assess corrosion in tendons of prestressed concrete girders", Proceedings of IEEE Topical Conference on Wireless Communication Technology, 241-243.
  3. Celebi, M. (2002), "Seismic instrumentation of buildings (with emphasis on federal buildings)", Technical Report No. 0-7460-68170, United States Geological Survey, Menlo Park, CA.
  4. Decher, G. (1997), "Fuzzy nanoassemblies: toward layered polymeric multicomposites", Science, 277(29), 1232-7. https://doi.org/10.1126/science.277.5330.1232
  5. Doebling, S. W., Farrar, C. R., and Prime, M. B. (1998), "Summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  6. Duda, R. O., Hart, P. E., and Stork, D. G. (2001), Pattern Classification, Wiley, New York, NY.
  7. Farrar, C. R. (2001), "Historical overview of structural health monitoring", Lecture Notes on Structural Health Monitoring using Statistical Pattern Recognition, Los Alamos Dynamics, Los Alamos, NM.
  8. Finkenzeller, K. (2003), RFID Handbook Fundamentals and Applications in Contactless Smart Cards and Identification, Wiley, West Sussex, England.
  9. Jiang, C., Markutsya, S., and Tsukruk, V. V. (2004), "Collective and individual plasmon resonances in nanoparticle films obtained by spin-assisted layer-by-layer assembly", Langmuir, 20(3), 882-890. https://doi.org/10.1021/la0355085
  10. Kotov, N. A. (2001), "Ordered layered assemblies of nanoparticles", MRS Bulletin, 26(12), 992-7. https://doi.org/10.1557/mrs2001.255
  11. Lee, Y. (1998), "RFID coil design", Microchip AN678, 1-18.
  12. Liu, Y., Wang, Y., and Claus, R. O. (1998), "Layer-by-layer ionic self-assembly of Au colloids into multilayer thin-films with bulk metal conductivity", Chemical Physical Letters, 298(4-6), 315-319. https://doi.org/10.1016/S0009-2614(98)01209-3
  13. Loh, C-H., Lynch, J. P., Lu, K-C., Wang, Y., Chang, C-M., Lin, P-Y., and Yeh, T-H. (2007a), "Experimental verification of a wireless sensing and control system for structural control using MR dampers", Earthq. Eng. Struct. Dyn., 36(10), 1303-1328. https://doi.org/10.1002/eqe.682
  14. Loh, K. J., Kim, J., Lynch, J. P., Wong Shi Kam, N., and Kotov, N. A. (2007b), "Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing", Smart Mater. Struct., 16(2), 429-438. https://doi.org/10.1088/0964-1726/16/2/022
  15. Loh, K. J., Lynch, J. P., Shim, B., and Kotov, N. A. (2008), "Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors", J. Intell. Mater. Sys. Struct., 19(7), 747-764.
  16. Lynch, J. P. and Loh, K. J. (2006), "A summary review of wireless sensors and sensor networks for structural health monitoring", Shock Vib. Digest, 38(2), 91-128. https://doi.org/10.1177/0583102406061499
  17. Lynch, J. P., Sundararajan, A., Law, K. H., Kiremidjian, A. S., Kenny, T. W., and Carryer, E. (2003), "Embedment of structural monitoring algorithms in a wireless sensing unit", Struct. Eng. Mech., 15(3), 285-297. https://doi.org/10.12989/sem.2003.15.3.285
  18. Lynch, J. P., Wang, Y., Loh, K. J., Yi, J-H., and Yun, C-B. (2006), "Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors", Smart Mater. Struct., 15(6), 1561-1575. https://doi.org/10.1088/0964-1726/15/6/008
  19. Mita, A. and Takahira, S. (2002), "Health monitoring of smart structures using damage index sensors", Proceedings of SPIE - Smart Structures and Materials, 4696, 92-99.
  20. Mita, A. and Takahira, S. (2003), "A smart sensor using a mechanical memory for structural health monitoring of a damage-controlled building", Smart Mater. Struct., 12(2), 204-209. https://doi.org/10.1088/0964-1726/12/2/307
  21. Mita, A. and Takahira, S. (2004), "Damage index sensors for smart structures", Struct. Eng. Mech., 17(3-4), 331-346. https://doi.org/10.12989/sem.2004.17.3_4.331
  22. Moore, M., Phares, B., Graybeal, B., Rolander, D., and Washer, G. (2001), "Reliability of visual inspection for highway bridges", Technical report no. FHWA-RD-01-020, Federal Highway Administration (FHWA), Washington, DC.
  23. Njord, J. R. and Meyer, M. D. (2006), "Critical issues in transportation", Transportation Research Board of the National Academics, 1-13.
  24. Simonen, J. T., Andringa, A. A., Grizzle, K. M., Wood, S. L., and Neikirk, D. P. (2004), "Wireless sensors for monitoring corrosion in reinforced concrete members", Proceedings of SPIE - Smart Structures and Materials, 5391(1), 587-596.
  25. Sodano, H. A., Inman, D. J., and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib. Digest, 36(3), 197-205. https://doi.org/10.1177/0583102404043275
  26. Spencer, Jr., B. F., Ruiz-Sandoval, M. E., and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Cont. Health Monit., 11(4), 349-368. https://doi.org/10.1002/stc.48
  27. Straser, E. G. and Kiremidjian, A. S (1998), "A modular, wireless damage monitoring system for structures", Technical report no. 128, John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
  28. Tanner, N. A., Wait, J. R., Farrar, C. R., and Sohn, H. (2003), "Structural health monitoring using modular wireless sensors", J. Intell. Mater. Sys. Struct., 14(1), 43-56. https://doi.org/10.1177/1045389X03014001005
  29. Todd, M. (2005), "Different approaches towards deploying SHM sensor arrays", Proceedings of the 5th International Workshop on Structural Health Monitoring, 1594-1601.
  30. Zhang, M., Su, L., and Mao, L. (2006), "Surfactant functionalization of carbon nanotubes (CNTs) for layer-bylayer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid", Carbon, 44(2), 276-283. https://doi.org/10.1016/j.carbon.2005.07.021

Cited by

  1. Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization vol.8, pp.19, 2016, https://doi.org/10.1039/C5NR08326E
  2. Radio frequency identification (RFID) based corrosion monitoring sensors Part 2 – Application and testing of coating materials vol.49, pp.8, 2014, https://doi.org/10.1179/1743278214Y.0000000212
  3. Rapid structural condition assessment using radio frequency identification (RFID) based wireless strain sensor vol.54, 2015, https://doi.org/10.1016/j.autcon.2015.02.013
  4. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress vol.25, pp.42, 2013, https://doi.org/10.1002/adma.201302240
  5. Passive Wireless Frequency Doubling Antenna Sensor for Strain and Crack Sensing vol.16, pp.14, 2016, https://doi.org/10.1109/JSEN.2016.2567221
  6. Effect of water content on the piezoresistivity of MWNT/cement composites vol.45, pp.14, 2010, https://doi.org/10.1007/s10853-010-4414-7
  7. Battery-free slotted patch antenna sensor for wireless strain and crack monitoring vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1217
  8. Passive wireless smart-skin sensor using RFID-based folded patch antennas vol.2, pp.1, 2011, https://doi.org/10.1080/19475411.2010.545450
  9. Graphene-based wireless bacteria detection on tooth enamel vol.3, pp.1, 2012, https://doi.org/10.1038/ncomms1767
  10. Enhanced Radio Frequency Biosensor for Food Quality Detection Using Functionalized Carbon Nanofillers vol.7, pp.22, 2015, https://doi.org/10.1021/acsami.5b01876
  11. An Eigenvalue Perturbation Solution for the Multi-Physics Simulation of Antenna Strain Sensors 2017, https://doi.org/10.1109/JMMCT.2017.2698338
  12. Wireless Sensing in Complex Electromagnetic Media: Construction Materials and Structural Monitoring vol.15, pp.10, 2015, https://doi.org/10.1109/JSEN.2015.2441555
  13. Radio frequency identification (RFID) based corrosion monitoring sensors Part 1 – Component selection and testing vol.50, pp.1, 2015, https://doi.org/10.1179/1743278214Y.0000000211
  14. Structural Monitoring Techniques for the Largest Excavation Section Subsea Tunnel: Xiamen Xiang’an Subsea Tunnel vol.30, pp.2, 2017, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000594
  15. Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology vol.64, pp.7, 2012, https://doi.org/10.1007/s11837-012-0358-5
  16. Frequency-selective surface-based chipless passive RFID sensor for detecting damage location vol.24, pp.12, 2017, https://doi.org/10.1002/stc.2028
  17. Wireless and embedded carbon nanotube networks for damage detection in concrete structures vol.20, pp.39, 2009, https://doi.org/10.1088/0957-4484/20/39/395502
  18. Voltammetric and conductometric behavior of nanocomposites of polyaniline and gold nanoparticles prepared by layer-by-layer technique vol.14, pp.7, 2010, https://doi.org/10.1007/s10008-009-0922-2
  19. New Approaches of Nanocomposite Materials for Electromagnetic Sensors and Robotics : vol.1, pp.1, 2008, https://doi.org/10.4018/ijmtie.2011010105
  20. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing vol.22, pp.8, 2013, https://doi.org/10.1088/0964-1726/22/8/085009
  21. Corrosion Sensors for Structural Health Monitoring of Oil and Natural Gas Infrastructure: A Review vol.19, pp.18, 2019, https://doi.org/10.3390/s19183964
  22. Advances in flexible and wearable pH sensors for wound healing monitoring vol.40, pp.11, 2008, https://doi.org/10.1088/1674-4926/40/11/111607
  23. Wireless Corrosion Monitoring Sensors Based on Electromagnetic Interference Shielding of RFID Transponders vol.76, pp.4, 2008, https://doi.org/10.5006/3384
  24. Emerging RFID technology in structural engineering - A review vol.28, pp.None, 2008, https://doi.org/10.1016/j.istruc.2020.10.036
  25. Nonlinear Behavior of Single Walled Carbon Nanotube Reinforced Aluminium Alloy Beam vol.69, pp.None, 2008, https://doi.org/10.4028/www.scientific.net/jnanor.69.89