DOI QR코드

DOI QR Code

Sensors, smart structures technology and steel structures

  • Liu, Shih-Chi (Division of Civil, Mechanical and Manufacturing Innovation, National Science Foundation)
  • Received : 2007.03.08
  • Accepted : 2007.12.14
  • Published : 2008.09.25

Abstract

This paper deals with civil infrastructures in general, sensor and smart structure technology, and smart steel structures in particular. Smart structures technology, an integrated engineering field comprising sensor technology, structural control, smart materials and structural health monitoring, could dramatically transform and revolutionize the design, construction and maintenance of civil engineering structures. The central core of this technology is sensor and sensor networks that provide the essential data input in real time for condition assessment and decision making. Sensors and robust monitoring algorithms that can reliably detect the occurrence, location, and severity of damages such as crack and corrosion in steel structures will lead to increased levels of safety for civil infrastructure, and may significantly cut maintenance or repair cost through early detection. The emphasis of this paper is on sensor technology with a potential use in steel structures.

Keywords

References

  1. Bonowitz, D., Durkin, M., Gates, W., Morden, M., and Youssef, N. (1995), Surveys and Assessment of Damage to Buildings Affected by the Northridge Earthquake of January 17, 1994, SAC Report 95-06, December 1995.
  2. Chang, P. and Liu, S. (2003), "Recent research in in nondestructive evaluation of civil infrastructures", ASCE J. Mater. Civil Eng., 15(3), 298-304. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(298)
  3. Clark, P. W., Aiken, I. D., Kelly, J. M., Higashimo, M, Krumme, R. C. (1995), "Experimental and analytical studies of shape memory alloy dampers for structural control", Proc. SPIE, 2445, 241-251.
  4. Craig, B. D. and Lane, R. A. (2005), "Environmentally-assisted cracking: comparing the influence of hydrogen", Stress, and Corrosion on Cracking Mechanisms, The AMPIAC Quarterly, 9(1), 17-24.
  5. Craig, B. D. (2005), "Material failure modes, Part III: A brief tutorial on corrosion related material failure modes", The AMPIAC Quarterly, 9(3), 15-21.
  6. Demers, C. E. and Fisher, J. W. (1990), A Survey of Localized Cracking in Steel Bridges 1981 to 1988, Fatigue Cracking of Steel Bridge Structures, Vol. 1, Report No. FHWA-RD-89-166, FHWA, U.S. Department of Transportation.
  7. Dolce, M, Cardone, D, and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dyn, 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
  8. Dolce, M., Cardone, D, Ponzo, F. C., Valente, C. (2005), "Shaking table tests on reinforced concrete frames without and with passive control systems", Earthq. Eng. Struct. Dyn., 34(14), 1687-1717. https://doi.org/10.1002/eqe.501
  9. Dyke, S. J., Spencer Jr. B. F. Sain, M. K. and Carlson, J. D. (1998), "An experimental study of MR dampers for seismic protection", Smart Mater. Struct., 7, 693-703. https://doi.org/10.1088/0964-1726/7/5/012
  10. Favro, L. D., Thomas, R. L., Han, X., Ouyang, Z, Newaz, G, Gentile, D. (2001), "Sonic infrared imaging of fatigue cracks", Int. J. Fatigue, 23, S471-S476. https://doi.org/10.1016/S0142-1123(01)00151-7
  11. Fisher, J. W., Yen, B. T. and Wang, D. (1991), "Corrosion and its influence on strength of steel bridge members", Transportation Research Record no. 1290, 3rd Bridge Engrg. Conf., Transportation Research Board, National Research Council, Washington, D.C., pp. 211-219.
  12. Fisher, J. W., Kaufmann, E. J. and Pense, A. W. (1998), "Effect of corrosion on crack development and fatigue life", Transportation Research Record No. 1624, National Research Council, Washington, D.C., pp. 110-117.
  13. Giurgiutiu, V. (2003), "Embedded ultrasonics NDE with piezoelectric wafer active sensors", J. Instrumentation, Mesure, Metrologie, Lavoisier Pub., Paris, France, RS series 12M, 3(3-4), 149-180.
  14. Giurgiutiu, V., Reynolds, A. and Rogers, C. A. (1999), "Experimental investigation of E/M impedance health monitoring of spot-welded structure joints", J. Intell. Mater. Sys. Struct., 10, 802-812. https://doi.org/10.1106/N0J5-6UJ2-WlGV-Q8MC
  15. Granata, R. D., Wilson, J. C. and Fisher, J. W. (1996), "Assessing corrosion on steel structures using corrosion coulometer", ASCE J. Infrastructure Sys., 2(3), 139-144. https://doi.org/10.1061/(ASCE)1076-0342(1996)2:3(139)
  16. Ihn, J.-B. and Chang, F.-K. (2004), "Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator Network: I. diagnostics", Smart Mater. Struct., 13, 609-620. https://doi.org/10.1088/0964-1726/13/3/020
  17. Isalgue, A., Lovey, F. C., Terriault, P., Martorell, F., Torra, R. M. and Torra, V. (2006), "SMA for Dampers", in Civil Engineering Materials Transactions 47(3), 682-690.
  18. Janke, L, Czaderski, C, Motavalli, M and Ruth, J. (2005), "Applications of shape memory alloys in civil engineering structures - Overview, limits and new ideas", Mater. Struct., 38, 578-592.
  19. Kaczinski, M. R., Dexter, R. J. and Van Dien, J. P. (1998), "Fatigue-resistant design of cantilevered signal, sign, and light supports", NCHRP Report 412, National Cooperative Highway Research Program, Transportation Research Board, Washington, D.C.
  20. Khazem, D. A., Kwun, H., Kim, S. Y. and Dynes, C. (2001), "Long-range inspection of suspension ropes in suspension bridges using the magnetostrictive sensor technology", Proc. 3rd Int. Workshop on Structural Health Monitoring, Stanford University, Palo Alto, California, pp. 384-392.
  21. Kim, S. B. and Sohn, H. (2007), "Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials", Smart Mater. Struct., 16, 2375-2387. https://doi.org/10.1088/0964-1726/16/6/042
  22. Kwun, H. and Teller, C. M. (1994), "Detection of fractured wires in steel cables using magnetostrictive sensors", Mater. Eval., 503-507.
  23. Lanza di Scalea, F., Rizzo, P. and Seible, F. (2003), "Stress measurement and defect detection in steel strands by guided stress waves", ASCE J. Mater. Civil Eng., Special Issue on NDE, 15(3), 219-227. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(219)
  24. Li, J. and Lu, Y. (2000), "A highly sensitive and selective catalytic DNA biosensor for lead ions", J. Am. Chem. Soc. 2000, 122, 10466-10467. https://doi.org/10.1021/ja0021316
  25. Liu, S. C., et al, (1993), "Civil infrastructure systems research: strategic issues", National Science Foundation, USA.
  26. Lynch, J. P. and Loh, K. (2006), "A summary review of wireless sensors and sensor networks for structural health monitoring", Shock Vib. Digest, 38(2), 91-128. https://doi.org/10.1177/0583102406061499
  27. Lynch, J. P., Wang, Y., Swartz, R. A., Luc, K. C., Loh, C. H. (2006), "Implementation of a closed-loop structural control system using wireless sensor networks", J. Struct. Control and Health Monitoring, in press.
  28. Nemet-Nasser, S., Meyer, D., and Smith, D. (2004), "Self-monitoring structural composite materials with integrated sensing networks", NSF sensors project.
  29. Ocel, J., DesRoches, R., Leon, R. T. Hess, W. G., Krumme, R., Hayes, J. R. and Sweeney, S. (2004), "Steel beam-column connections using shape memory alloys", ASCE J. Struct. Eng. 130(5), 732-740. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(732)
  30. Ozevin, D., Greve, D. W., Oppenheim, I. J. and Pessiki, S. P. (2005), "Design, characterization and experimental use of the second generation MEMS acoustic emission device", SPIE Smart Structures Conference SN09, San Diego, March 2005.
  31. Park, G., Sohn, H., Farrar, C. R. and Inman, D. J. (2003), "Overview of piezoelectric impedance-based structural health monitoring and path forward", The Shock Vib. Digest, 35(6), 451-463. https://doi.org/10.1177/05831024030356001
  32. Park, S., Yun, C. B., Roh, Y. and Lee, J. J. (2005a), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Sys., 1(4), 339-353. https://doi.org/10.12989/sss.2005.1.4.339
  33. Park, S., Yun, C. B. and Roh, Y. (2005b), "Efficient use of Lamb waves and wavelet coefficients for damage detection of steel structures", KSCE J. Civ. Eng., 25(3A), 521-530.
  34. Ross, R. and Goldstein, M. (2003), "Monitor warns of bridge corrosion", Better Roads, August, pp. 88-90.
  35. Shen, A. and Shoureshi, R. (2005), "Self-powered sensory nerve system for civil structures using hybrid forisome actuators", NSF collabortative sensor project.
  36. Shen, A., Hamlington, B. D., Knoblauch, M., Peters, W. S. and Pickard, W. F. (2006), "Forisome based biomimetic smart materials", Inte. J. Smart Struct. Sys., 2(3), 225-235. https://doi.org/10.12989/sss.2006.2.3.225
  37. Sohn, H., Greve, D. W. and Oppenheim, I. J. (2006), "Application of inductively coupled PZT transducers for crack detection in a steel girder bridge", Proc. US-Korea Workshop on Smart Structures Technology for Steel Structures, Seoul, Korea, November 16-18, 2006.
  38. Spencer Jr. B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", ASCE J. Struct. Eng., 130, 845-856.
  39. Spencer Jr. B. F., Ruiz-Sandoval, M. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Control Health Monit., 11(4), 349-368. https://doi.org/10.1002/stc.48
  40. Dogaru, T. and Smith, S. T. (2001), "Giant magnetoresistance-based eddy-current sensor", IEEE Transactions on Magnetics, 37(5), 3831-3837. https://doi.org/10.1109/20.952754
  41. Wang, M. L., Lloyd, G. M. and Hovorka, O. (2001), "Development of a remote coil magnetoelastic stress sensor for steel cables", Health Monitoring and Management of Civil Infrastructure Systems, SPIE, 4337, 122-128.
  42. Wilde, K, Gardoni, P, and Fujino, Y. (2000), "Base isolation system with shape memory alloy device for elevated highway bridges", Eng. Struct., 22(3), 222-229. https://doi.org/10.1016/S0141-0296(98)00097-2
  43. Wilson, J. C. and Wesolowsky, M. J. (2005), "Shape memory alloys for seismic response modification: a stateof-the-art review", Earthq. Spectra, 21(2), 569-601. https://doi.org/10.1193/1.1897384
  44. Zhang, Y. and Li, X. (2006), "Piezoelectric paint sensor for ultrasonic-based crack detection in metal structures", Proc. US-Korea Workshop on Smart Structures Technology for Steel Structures, Seoul, Korea, November 16-18, 2006.
  45. Zhu, S. and Zhang, Y. (2007), "Seismic behavior of self-centering braced frame buildings with reusable hysteretic damping brace", Earthq. Eng. Struct. Dyn., 36, 1329-1346. https://doi.org/10.1002/eqe.683

Cited by

  1. Structural health monitoring of the Manitoba Golden Boy vol.6, pp.1, 2008, https://doi.org/10.12989/sss.2010.6.1.087
  2. A dragonfly inspired flapping wing actuated by electro active polymers vol.6, pp.7, 2008, https://doi.org/10.12989/sss.2010.6.7.867