DOI QR코드

DOI QR Code

Optimal sensor placement techniques for system identification and health monitoring of civil structures

  • Rao, A. Rama Mohan (Structural Engineering Research Centre CSIR Campus) ;
  • Anandakumar, Ganesh (Structural Engineering Research Centre CSIR Campus)
  • 투고 : 2006.07.11
  • 심사 : 2007.12.07
  • 발행 : 2008.07.25

초록

Proper pretest planning is a vital component of any successful vibration test on engineering structures. The most important issue in dynamic testing of many engineering structures is arriving at the number and optimal placement of sensors. The sensors must be placed on the structure in such a way that all the important dynamic behaviour of a structural system is captured during the course of the test with sufficient accuracy so that the information can be effectively utilised for structural parameter identification or health monitoring. Several optimal sensor placement (OSP) techniques are proposed in the literature and each of these methods have been evaluated with respect to a specific problem encountered in various engineering disciplines like aerospace, civil, mechanical engineering, etc. In the present work, we propose to perform a detailed characteristic evaluation of some selective popular OSP techniques with respect to their application to practical civil engineering problems. Numerical experiments carried out in the paper on various practical civil engineering structures indicate that effective independence (EFI) method is more consistent when compared to all other sensor placement techniques.

키워드

참고문헌

  1. Chen, J. C. and Garba, J. A. (1985), "Structural analysis model validation using modal test data", Proceedings of the joint ASCE/ASME conference, (June): 109-137.
  2. Cobb, R. G. and Liebst, B. S. (1996), "Sensor location prioritisation and structural damage localization using minimal sensor information", AIAA J., 35(2), 369-374.
  3. Doebling, S. W. (1996), "Measurement of structural flexibility matrices for experiments with incomplete reciprocity", Ph. D. dissertation. Colorado University. http://sdcl.colorado.edu/Publications/1995/Theses/Doebling_PhD.pdf.
  4. Duda, R. O. (1997), "Covariance. department of electrical engineering", San Jose State University. http://www.engr.sjsu.edu/-knapp/HCIRODPR/PR_Mahal /cov.htm.
  5. Fedorov, V. and Hackl, P. (1994), "Optimal experimental design: spatial sampling", Calcutta Statistical Association Bulletin, 44(March-June): 173-174.
  6. Guo, H. Y., Zhang, L. L., and Zhou, J. X. (2004), "Optimal placement of sensors for structural health monitoring using improved genetic algorithms", Smart Mater. Struct., 13, 528-534. https://doi.org/10.1088/0964-1726/13/3/011
  7. Hemez, P. M. and Farhat, C. (1994), "An energy based optimum sensor placement criterion and its application to structural damage detection", 12th International Modal Analysis Conference (IMAC), Society of Experimental Mechanics, Honolulu, 1994, 1568-1575.
  8. Heo, G., Wang, M. L. and Satpathi, D. (1997), "Optimal transducer placement for health monitoring of long span bridge", Soil Dyn. Earthq. Eng., 16, 495-502. https://doi.org/10.1016/S0267-7261(97)00010-9
  9. Heredia-Zavoni, E. and Esteva, L. (1998), "Optimal instrumentation of uncertain structural systems subject to earthquake motions", Earthq. Eng. Struct. Dyn., 27(4), 343-362. https://doi.org/10.1002/(SICI)1096-9845(199804)27:4<343::AID-EQE726>3.0.CO;2-F
  10. Heredia-Zavoni, E., Montes-Iturrizaga, R. and Esteva, L. (1999), "Optimal instrumentation of structures on flexible base for system identification", Earthq. Eng. Struct. Dyn., 28(12), 1471-1482. https://doi.org/10.1002/(SICI)1096-9845(199912)28:12<1471::AID-EQE872>3.0.CO;2-M
  11. Imamovic, N. (1998), "Model validation of large finite element model using test data", Ph.D. Dissertation. Imperial College, London.
  12. Jaynes, E. T. (1978), "Where do we stand on maximum entropy?", R.D. Levine, M. Tribus (Eds.), The Maximum Entropy Formalism, MIT Press, Cambridge.
  13. Kammer, D. C. (1991), "Sensor placement for on orbit modal identification and correlation of large space structures", AIAA J. Guidance, Control, and Dynamics, 14(2), 251-259. https://doi.org/10.2514/3.20635
  14. Kammer, D. C. and Brillhart, R. D. (1996), "Optimal sensor placement for modal identification using systemrealization methods", AIAA J. Guidance, Control, and Dynamics, 19, 729-731. https://doi.org/10.2514/3.21688
  15. Kammer, D. C. and Tinker, M. L. (2004), "Optimal placement of triaxial accelerometers for modal vibration tests", J. Mech. Sys. Signal Processing, 18, 29-41. https://doi.org/10.1016/S0888-3270(03)00017-7
  16. Kammer, D. C. (2005), "Sensor set expansion for modal vibration testing", J. Mech. Syst. Signal Processing, 19, 700-713. https://doi.org/10.1016/j.ymssp.2004.06.003
  17. Kirkegaard, P. H. and Brincker, R. (1994), "On the optimal locations of sensors for parametric identification of linear structural systems", J. Mech. Sys. Signal Processing, 8, 639-647. https://doi.org/10.1006/mssp.1994.1045
  18. Larson, C. B., Zimmerman, D. C. and Marek, E. L. (1994), "A comparison of modal test planning techniques: excitation and sensor placement using the NASA 8-bay truss", Proceeding of the 12th IMAC, Society of Experimental Mechanics, Honolulu, 205-211.
  19. Metallidis, P., Verros, G., Natsiavas, S. and Papadimitriou, C. (2003), "Fault detection and optimal sensor location in vehicle suspensions", J. Vib. Control, 9(3-4), 337-359. https://doi.org/10.1177/107754603030755
  20. Papadimitriou, C., Beck, J. L. and Au, S. K. (2000), "Entropy-based optimal sensor location for structural model updating", J. Vib. Control, 6(5), 781-800. https://doi.org/10.1177/107754630000600508
  21. Papadimitriou, C. (2004), "Optimal sensor placement for parametric identification of structural systems", J. Sound Vib., 278(4-5), 923-947. https://doi.org/10.1016/j.jsv.2003.10.063
  22. Papadimitriou, C. (2005), "Pareto optimal sensor locations for structural identification", Comput. Meth. Appl. Mech. Eng., 194, 1655-1673. https://doi.org/10.1016/j.cma.2004.06.043
  23. Penny, J. E. T., Friswell, M. I. and Garvey, S. D. (1994), "Automatic choice of measurement location for dynamic testing", AIAA J., 32, 407-414. https://doi.org/10.2514/3.11998
  24. Reynier, M. and Abou-Kandil, H. (1999), "Sensors location for updating problems", Mech. Sys. Signal Processing, 13(2), 297-314. https://doi.org/10.1006/mssp.1998.1213
  25. Shi, Z. Y., Law, S. S. and Zhang, L. M. (2000), "Optimum sensor placement for structural damage detection", J. Eng. Mech., ASCE, 126(11), 1173-1179. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:11(1173)
  26. Udwadia, F. E. and Garba, J. A. (1985), "Optimal sensor locations for structural identification", Proceedings of the JPL Workshop on Identification and Control of Flexible Structures, 247-261.
  27. Udwadia, F. E. (1994), "Methodology for optimal sensor locations for parameter identification in dynamic systems", J. Eng. Mech., ASCE, 120(2), 368-390. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(368)
  28. Worden, K. and Burrows, A. P. (2001), "Optimal sensor placement for fault detection", Eng. Struct., 23, 885-901. https://doi.org/10.1016/S0141-0296(00)00118-8
  29. Yao, L., Sethares, W. A. and Kammer, D. C. (1993), "Sensor placement for on orbit modal identification via a genetic algorithm", AIAA J., 31, 1167-1169. https://doi.org/10.2514/3.49057
  30. Yuen, K. V., Katafygiotis, L. S., Papadimitriou, C. and Mickleborough, N. C. (2001), "Optimal sensor placement methodology for identification with unmeasured excitation", J. Dyn. System Measurement Control., 123(4), 677-686. https://doi.org/10.1115/1.1410929

피인용 문헌

  1. Clustering of Sensor Locations Using the Effective Independence Method vol.53, pp.5, 2015, https://doi.org/10.2514/1.J053503
  2. Sensor Placement Optimization in Structural Health Monitoring Using Niching Monkey Algorithm vol.14, pp.05, 2014, https://doi.org/10.1142/S0219455414400124
  3. Elevator-Assisted Sensor Data Collection for Structural Health Monitoring vol.11, pp.10, 2012, https://doi.org/10.1109/TMC.2011.191
  4. Blockage assessment of buildings during emergency using multiple types of sensors vol.49, 2015, https://doi.org/10.1016/j.autcon.2014.10.001
  5. Multi-objective Optimization of Sensor and Excitation Layouts for Frequency Response Function-Based Structural Damage Identification vol.27, pp.2, 2012, https://doi.org/10.1111/j.1467-8667.2011.00726.x
  6. Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors vol.16, pp.6, 2015, https://doi.org/10.12989/sss.2015.16.6.981
  7. Influence of model errors in optimal sensor placement vol.389, 2017, https://doi.org/10.1016/j.jsv.2016.10.033
  8. Optimal sensor placement for damage detection of bridges subject to ship collision vol.24, pp.9, 2017, https://doi.org/10.1002/stc.1963
  9. Output-only damage localization technique using time series model vol.43, pp.9, 2018, https://doi.org/10.1007/s12046-018-0912-0
  10. Bio-inspired neuro-symbolic approach to diagnostics of structures vol.7, pp.3, 2008, https://doi.org/10.12989/sss.2011.7.3.229
  11. A Generalized Optimal Sensor Placement Technique for Structural Health Monitoring and System Identification vol.86, pp.None, 2008, https://doi.org/10.1016/j.proeng.2014.11.077
  12. A hybrid structural health monitoring technique for detection of subtle structural damage vol.22, pp.5, 2008, https://doi.org/10.12989/sss.2018.22.5.587
  13. Damage detection in nonlinear systems using an improved describing function approach with limited instrumentation vol.96, pp.2, 2019, https://doi.org/10.1007/s11071-019-04864-3
  14. Multi-constrained optimization combining ARMAX with differential search for damage assessment vol.72, pp.6, 2008, https://doi.org/10.12989/sem.2019.72.6.689
  15. A Multi-Model Based Approach for the Detection of Subtle Structural Damage Considering Environmental Variability vol.20, pp.3, 2020, https://doi.org/10.1142/s0219455420500388
  16. Computational methodologies for optimal sensor placement in structural health monitoring: A review vol.19, pp.4, 2008, https://doi.org/10.1177/1475921719877579
  17. Optimal Sensor Placement for Laminated Composite and Steel Cantilever Beams by the Effective Independence Method vol.31, pp.1, 2021, https://doi.org/10.1080/10168664.2019.1704202
  18. Breathing Crack Localization in Structures Based on Principal Component Analysis of Forced Vibration Responses vol.21, pp.3, 2008, https://doi.org/10.1142/s0219455421500413
  19. Structure-acoustic simulation using the modal expansion method and the optimum sensor placement vol.43, pp.12, 2008, https://doi.org/10.1007/s40430-021-03297-7