References
- Auricchio, F. and Lubliner, J. (1997),"A uniaxial model for shape-memory alloys", Int. J. Solid. Struct., 34, 3601-3618. https://doi.org/10.1016/S0020-7683(96)00232-6
- Boresi, A. P. and Schmidt, R. J. (2003), Advanced Mechanics of Materials, 6th Ed., John Wiley & Sons.
- Brinson, L. C. and Huang, M. S. (1996),"Simplifications and comparisons of shape memory alloy constitutive models", J. Intel. Mater. Syst. Struct., 7, 108-114. https://doi.org/10.1177/1045389X9600700112
- Casciati, F. and Faravelli, L. (2007),"Structural components in shape memory alloy for localized energy dissipation", Comput. Struct., in press.
- De Borst, R. (1987),"Smeared cracking, plasticity, creep and thermal loading: a unified approach", Comput Meth. Appl. Mech. Eng., 62(1), 89-110. https://doi.org/10.1016/0045-7825(87)90091-0
- El-Borgi, S., Choura, S., Neifar, M., Smaoui, H., Majdoub, M. S. and Cherif, D. (2006),"Towards a rational methodology for the seismic vulnerability assessment and retrofitting of a historical building", Proceedings of the 4th World Conference on Structural Control, San Diego, July.
- Lagoudas, D., Rediniotis, O. and Khan, M. (1999),"Applications of shape memory alloys to bioengineering and biomedical technology", Proceedings of the 4th International Workshop on Scattering Theory and Biomedical Applications, Perdika, Greece, Oct., 195-207.
- Patoor, E. (1990), Les alliages a memoire de forme, Hermes, Paris.
- Patoor, E. and Berveiller, M. (1994), Technologie des alliages a memoire de forme, Hermes, Paris.
- Syrmakezis, C. A., Chronopoulos, M. P., Sophocleous, A. A. and Asteris, P. G. (1995),"Structural analysis methodology for historical buildings", Architectural Studies, Materials and Analysis, Edited by C. A. Brebbia and B. Leftheris, WIT Press, 373-382.
- Trochu, F. and Yao Qian, Y. (1997),"Nonlinear finite element simulation of superelastic shape memory alloy parts", Comput. Struct., 67, 799-810.
Cited by
- Seismic Response Control Using Shape Memory Alloys: A Review vol.22, pp.14, 2011, https://doi.org/10.1177/1045389X11411220
- Seismic vulnerability assessment of historical masonry structural systems vol.62-63, 2014, https://doi.org/10.1016/j.engstruct.2014.01.031
- Statistically Filtering Data for Operational Modal Analysis under Ambient Vibration in Structural Health Monitoring Systems vol.68, 2016, https://doi.org/10.1051/matecconf/20166814010
- A 1D constitutive model for shape memory alloy using strain and temperature as control variables and including martensite reorientation and asymmetric behaviors vol.23, pp.9, 2014, https://doi.org/10.1088/0964-1726/23/9/095026
- Effectiveness of superelastic bars for seismic rehabilitation of clay-unit masonry walls vol.42, pp.5, 2013, https://doi.org/10.1002/eqe.2241
- Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects vol.9, pp.2, 2019, https://doi.org/10.3390/app9020243
- Periodic seismic performance evaluation of highway bridges using structural health monitoring system vol.31, pp.5, 2009, https://doi.org/10.12989/sem.2009.31.5.527
- Applicability of Cu-Al-Mn shape memory alloy bars to retrofitting of historical masonry constructions vol.2, pp.3, 2008, https://doi.org/10.12989/eas.2011.2.3.233
- Multifunctional properties of shape memory materials in civil engineering applications: A state-of-the-art review vol.44, pp.None, 2008, https://doi.org/10.1016/j.jobe.2021.102657