References
- Boley, B. A. and Weiner J. H. (1960), Theory of Thermal Stresses, Wiley, New York.
- Bolotin, W. W. (1961), Kinetische Stabilitat Elastischer Systeme, VEB Deutscher Verlag der Wissenschaften, Berlin.
- Chen, L. W., Lin, C. Y. and Wang, C. C. (2002), "Dynamic stability analysis and control of a composite beam with piezoelectric layers", Compos. Struct., 56(1), 97-109. https://doi.org/10.1016/S0263-8223(01)00183-0
- Crespo da Silva, M. R. M. (1988), "Non-linear flexural-flexural-torsional-extensional dynamics of beams-I. Formulation", Int. J. Solids Struct., 24(12), 1225-1234. https://doi.org/10.1016/0020-7683(88)90087-X
- De Faria, A. R. (2004), "On buckling enhancement of laminated beams with piezoelectric actuators via stress stiffening", Compos. Struct. 65(2), 187-192. https://doi.org/10.1016/j.compstruct.2003.10.015
- Huang, T. C. (1961), "The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions", J. Appl. Mech., 28, 579-584. https://doi.org/10.1115/1.3641787
- Irschik, H. (1991), "Analogy between refined beam theories and the Bernoulli-Euler theory", Int. J. Solids Struct., 28(9), 1105-1112. https://doi.org/10.1016/0020-7683(91)90105-O
- Irschik, H. (1993), "On vibrations of layered beams and plates", ZAMM, 73, T34-T45.
- Irschik, H. (2002), "A review on static and dynamic shape control of structures by piezoelectric actuation", Eng. Struct., 24(1), 5-11. https://doi.org/10.1016/S0141-0296(01)00081-5
- Irschik, H., Nader, M. and Zehetner, C. (2003), "Exact cancellation of vibrations in elastic structures performing large rigid body motions", Proc. 10th International Congress on Sound and Vibration, 7, 3487-3498, 7-10 July, Stockholm, Sweden.
- Irschik, H. and Pichler, U. (2004), "An extension of Neumann's method for shape control of force-induced elastic vibrations by eigenstrains", Int. J. Solids Struct., 41(8), 871-884. https://doi.org/10.1016/j.ijsolstr.2003.09.023
- Irschik, H., Pichler, U., Nader, M. and Zehetner, C. (2004), "Compensation of deformations in elastic solids and structures in the presence of rigid-body motions", Advanced Dynamics and Control of Structures and Machines, H. Irschik, K. Schlacher, Editors, CISM Courses and Lectures, 444, 53-64, Springer, Vienna.
- Li, M. (1998), "The finite deformation of beam, plate and shell structures. Part II: The kinematic model and the Green-Lagrangian strains", Comput. Meth. Appl. Mech. Engrg., 156, 247-257. https://doi.org/10.1016/S0045-7825(97)00209-0
- Pai, P. F. and Nayfeh A. H. (1992), "A nonlinear composite beam theory", Nonlinear Dyn., 3(4), 273-303. https://doi.org/10.1007/BF00045486
- Rao, S. S. and Sunar, M. (1994), "Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey", Appl. Mech. Rev., 47(4), 113-123. https://doi.org/10.1115/1.3111074
- Rao, S. S. and Sunar, M. (1999), "Recent advances in sensing and control of flexible structures via piezoelectric material technology", Appl. Mech. Rev., 52(1), 1-16. https://doi.org/10.1115/1.3098923
- Reddy, J. N., Wang, C. M. and Lee K. H. (1997), "Relationships between bending solutions of classical and shear deformation beam theories", Int. J. Solids Struct., 34(26), 3373-3384. https://doi.org/10.1016/S0020-7683(96)00211-9
- Shoureshi, R., ed. (2003), CD-ROM Proceedings of ESF-NSF Workshop on Advancing Technological Frontiers for Feasibility of Ageless Structures, Strasbourg, France.
- Smolenski, W. M. (1999), "Statically and kinematically exact nonlinear theory of rods and its numerical verification", Comput. Meth. Appl. Mech. Eng., 178, 89-113.
- Tzou, H. S. (1998), "Multi-field transducers, devices, mechatronic systems, and structronic systems with smart materials", Shock Vib. Dig., 30(4), 282-294. https://doi.org/10.1177/058310249803000402
- Vinson, J. R. (1993), The Behavior of Shells Composed of Isotropic and Composite Materials, Kluwer, Dortrecht.
- Von Karman, T. (1910), "Festigkeitsprobleme im Maschinenbau", Encyklopadie der mathematischen Wissenschaften, Band 4.
- Wang, Q. (2002), "On buckling of column structures with a pair of piezoelectric layers", Eng. Struct., 24(2), 199-205. https://doi.org/10.1016/S0141-0296(01)00088-8
- Wang, Q. and Queck, S. T. (2002), "Enhancing flutter and buckling capacity of column by piezoelectric layers", Int. J. Solids Struct. 39(16), 4167-4180. https://doi.org/10.1016/S0020-7683(02)00334-7
- Wang, Q. and Varadan, V. K. (2003), "Transition of the buckling load of beams by the use of piezoelectric layers", Smart Mater. Struct., 12(5), 696-702. https://doi.org/10.1088/0964-1726/12/5/305
- Wang, Q. (2005), "A note on possible flutter of piezoelectric layers", Int. J. Struct. Stab. Dyn., 5(1), 125-133. https://doi.org/10.1142/S0219455405001465
- Yu, Y. Y. (1996), Vibrations of Elastic Plates, Springer, New York.
- Zehetner, C. (2005), Piezoelectric Compensation of Flexural and Torsional Vibrations in Beams Performing Rigid Body Motions, Doctoral Thesis, University of Linz, Austria.
- Zehetner, C. and Irschik, H. (2005), "On influence of piezoelectric actuation on the dynamic stability of simply supported smart beams", Proceedings of the Third European Conference on Structural Control, 2, S2-6 - S2-9 R. Flesch, H. Irschik and M. Krommer, Editors, July 12-15, 2004, Vienna, Austria.
- Ziegler, F. (1998), Mechanics of Solids and Fluids, Springer, Vienna.
Cited by
- Stability of an articulated column with two collocated piezoelectric actuators vol.30, pp.12, 2008, https://doi.org/10.1016/j.engstruct.2008.07.001
- On the unified equations of functionally graded piezoceramic beams vol.24, pp.4, 2017, https://doi.org/10.1080/15376494.2016.1142025
- Piezoelectric effect on transversal vibrations and buckling of a beam with varying cross section 2017, https://doi.org/10.1016/j.mechrescom.2016.10.003
- On the Use of Piezoelectric Sensors in Structural Mechanics: Some Novel Strategies vol.10, pp.12, 2010, https://doi.org/10.3390/s100605626
- Enhancement of the stability of beams with piezoelectric transducers vol.227, pp.10, 2013, https://doi.org/10.1177/0959651813503461
- Combined effect of pressure and geometric imperfection on buckling of stressed thin films on substrates vol.226, pp.5, 2015, https://doi.org/10.1007/s00707-014-1254-6
- Stability enhancement of beam-type structures by piezoelectric transducers: theoretical, numerical and experimental investigations vol.226, pp.12, 2015, https://doi.org/10.1007/s00707-015-1445-9
- Displacement tracking of pre-deformed smart structures vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.139
- Non-linear vibrations of a beam with a pair of piezoceramic actuators vol.31, pp.11, 2009, https://doi.org/10.1016/j.engstruct.2009.06.019
- Stability and vibrations control of a stepped beam using piezoelectric actuation vol.157, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201815708004
- Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance vol.7, pp.5, 2008, https://doi.org/10.12989/sss.2011.7.5.417
- A comparative study of dragonfly inspired flapping wings actuated by single crystal piezoceramic vol.10, pp.1, 2008, https://doi.org/10.12989/sss.2012.10.1.067
- Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2008, https://doi.org/10.12989/sss.2017.20.3.351
- Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
- Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis vol.25, pp.4, 2020, https://doi.org/10.12989/sss.2020.25.4.471