DOI QR코드

DOI QR Code

Second-order statistics of natural frequencies of smart laminated composite plates with random material properties

  • Singh, B.N. (Department of Aerospace Engineering, Indian Institute of Technology) ;
  • Umrao, Atul (Department of Applied Mechanics, MN National Inst. of Technology) ;
  • Shukla, K.K. (Department of Applied Mechanics, MN National Inst. of Technology) ;
  • Vyas, N. (Department of Aerospace Engineering)
  • Received : 2005.09.02
  • Accepted : 2007.03.26
  • Published : 2008.01.25

Abstract

Nowadays developments in the field of laminated composite structures with piezoelectric have attracted significant attention of researchers due to their wide range of applications in engineering such as sensors, actuators, vibration suppression, shape control, noise attenuation and precision positioning. Due to large number of parameters associated with its manufacturing and fabrication, composite structures with piezoelectric display a considerable amount of uncertainty in their material properties. The present work investigates the effect of the uncertainty on the free vibration response of piezoelectric laminated composite plate. The lamina material properties have been modeled as independent random variables for accurate prediction of the system behavior. System equations have been derived using higher order shear deformation theory. A finite element method in conjunction with Monte Carlo simulation is employed to obtain the secondorder statistics of the natural frequencies. Typical results are presented for all edges simply supported piezoelectric laminated composite plates to show the influence of scattering in material properties on the second order statistics of the natural frequencies. The results have been compared with those available in literature.

Keywords

References

  1. Chen, X. L., Hua, H. X. and Liu, Y. J. (2000), "A higher-order FEM for vibration control of composite plates with distributed piezoelectric sensors and actuators", Proceedings of ICES 2000 Advances in Computational Engineering & Sciences, Los Angeles, July.
  2. Correia Franco, V. M., Aguiar Gomes, M. A., Suleman, A, Mota Soares, C. M. and Mota Soares, C. A. (2000), "Modelling and design of adaptive composite structures", Comput. Meth. in Appl. Mech. and Eng., 185, 325-346. https://doi.org/10.1016/S0045-7825(99)00265-0
  3. Correia Franco, V. M., Mota Soares, C. M. and Mota Soares C. A. (1997), "Higher order models on the eigen frequency analysis and optimal design of laminated composite structures", Compos. Struc., 39(3-4), 237-253. https://doi.org/10.1016/S0263-8223(97)00118-9
  4. Fukuda, H., Chou, T. W., and Wata, K. K. (1981), "Probabilistic approach on the strength of fibrous composites, composite materials", Proceedings Japan-US Conference, Tokyo, 181-193.
  5. Heyliger, P. R. and Saravanos, D. A. (1995), "Exact free vibration analysis of laminated plate with embedded piezoelectric layers", J. Acous. Soc. Am., 98, 1547-57. https://doi.org/10.1121/1.413420
  6. Huang, J. H. and Tseng, L. W. (1996), "Analysis of hybrid multilayered piezoelectric plates", Int. J. Engr. Sc., 34(2), 171-181. https://doi.org/10.1016/0020-7225(95)00087-9
  7. Lin, S. C. and Kam, T. Y. (2000), "Probability failure analysis of transversely loaded composite plates using higher second order moment method", J. Eng. Mech., 126(8), 812-20. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(812)
  8. Liu, W. K., Belytschko, T. and Mani, A. (1986), Random field finite elements", Int. J. Num. Meth. I Eng., 23, 1831-45. https://doi.org/10.1002/nme.1620231004
  9. Maekawa, Z., Hamada, H., Yokoyama, A., Ishibashi, S. and Tanimoto, T. (1988), "Reliability evaluation of unidirectional CFRP", Proceedings of the 4th US-Japan Conference on Composite Materials, Washington D.C., 1025-1034.
  10. Maekawa, Z., Hamada, H., Lee, K. and Kitagawa, T. (1994), "Reliability evaluation of mechanical properties of AS4/PEEK composites", Composites, 25(1), 37-45. https://doi.org/10.1016/0010-4361(94)90065-5
  11. Naveenthraj, B. N., Iyengar, N. G. R. and Yadav, D. (1998), "Response of composite plates with random material properties using FEM and Monte Carlo simulation", Adv. Compos. Mat., 7(3), 219-237. https://doi.org/10.1163/156855198X00165
  12. Reddy, J. N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  13. Salim, S., Yadav, D. and Iyengar, N. G. R. (1993), "Analysis of composite plates with random material characteristics", Mech. Res. Commun., 20(5), 405-414. https://doi.org/10.1016/0093-6413(93)90031-I
  14. Shankara, C. A. and. Iyengar, N. G. R. (1996), "A CO element for the free vibration analysis of laminated composite plates", J. Sound Vib., 191(5), 721-738. https://doi.org/10.1006/jsvi.1996.0152
  15. Saravanos, D. A., Heyliger, P. R. and Hopkins, D. A. (1997), "Layer wise mechanics and finite element for the dynamic analysis of piezoelectric composite plates", Int. J. Solids and Struct., 34(3), 359-378. https://doi.org/10.1016/S0020-7683(96)00012-1
  16. Singh, B. N., Yadav, D. and Iyengar N. G. R. (2001), "Natural frequencies of composite plates with random material properties using higher-order shear deformation theory", Int. J. Mech. Sci., 43, 2193-2214. https://doi.org/10.1016/S0020-7403(01)00046-7
  17. Sngh, B. N., Iyengar, N. G. R. and Yadav, D. (2002), "A C0 finite element investigation for buckling of shear deformable laminated composite plates with random material properties", Struc. Eng. & Mech., An Int. J., 13, 53-74. https://doi.org/10.12989/sem.2002.13.1.053
  18. Tenn, L. F. (1981), "Statistical analysis of fibrous composite strength data, test methods and design allowable for fibrous composites", ASTM STP 734, American Society for Testing and Materials, pp. 229-244.
  19. Tiersten, H. F. (1969), Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
  20. Tzou, H. S. and Tseng C. I. (1991), "Distributed modal identification and vibration control of continua: piezoelectric finite element formulation and analysis", Trans. of the ASME Appl. Mech., 113, 500-505. https://doi.org/10.1115/1.2912811
  21. Zhou, X. and Chattopadhyay, H. G. (2000), "Dynamic responses of smart composites using a coupled thermopiezoelectric mechanical model", AIAA J., 38(10), 1939-1949. https://doi.org/10.2514/2.848

Cited by

  1. Reduction of Free Edge Peeling Stress of Laminated Composites Using Active Piezoelectric Layers vol.2014, 2014, https://doi.org/10.1155/2014/439492
  2. Frequency response analysis of a delaminated smart composite plate vol.26, pp.9, 2015, https://doi.org/10.1177/1045389X14544141
  3. Differential quadrature method for frequency analysis of membranes having irregular domains using an eight-node curvilinear element vol.5, pp.5, 2008, https://doi.org/10.12989/sss.2009.5.5.587