DOI QR코드

DOI QR Code

A hybrid tabu-simulated annealing heuristic algorithm for optimum design of steel frames

  • Degertekin, S.O. (Department of Civil Engineering, Dicle University) ;
  • Hayalioglu, M.S. (Department of Civil Engineering, Dicle University) ;
  • Ulker, M. (Department of Civil Engineering, Firat University)
  • Received : 2008.03.06
  • Accepted : 2008.09.19
  • Published : 2008.12.25

Abstract

A hybrid tabu-simulated annealing algorithm is proposed for the optimum design of steel frames. The special character of the hybrid algorithm is that it exploits both tabu search and simulated annealing algorithms simultaneously to obtain near optimum. The objective of optimum design problem is to minimize the weight of steel frames under the actual design constraints of AISC-LRFD specification. The performance and reliability of the hybrid algorithm were compared with other algorithms such as tabu search, simulated annealing and genetic algorithm using benchmark examples. The comparisons showed that the hybrid algorithm results in lighter structures for the presented examples.

Keywords

References

  1. American Institute of Steel Construction. (1989), Manual of steel construction: allowable stress design, Chicago, Illionis.
  2. American Institute of Steel Construction. (2001), Manual of steel construction: load and resistance factor design, Chicago, Illionis.
  3. Balling, R.J. (1991), "Optimal steel frame design by simulated annealing", J. Struct. Eng. ASCE, 117(6), 1780-1795. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1780)
  4. Bennage, W.A. (1994), "Structural optimization using simulated annealing and tabu search", MSc Thesis, The University of Wisconsin-Milwaukee.
  5. Bennage, W.A. and Dhingra, A.K. (1995), "Single and multiobjective structural optimization in discrete continuous variables using simulated annealing", Int. J. Numer. Meth. Eng., 38(16), 2753- 2773. https://doi.org/10.1002/nme.1620381606
  6. Camp, C., Pezeshk, S. and Cao, G. (1998) "Optimized design of two-dimensional structures using a genetic algorithm", J. Struct. Eng. ASCE, 124(5), 551-559. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(551)
  7. Chan, F.T.S., Chung, S.H. and Wadhwa, S. (2005) "A hybrid genetic algorithm for production and distribution", Omega- Int. J. Manage. S., 33(4), 345-355. https://doi.org/10.1016/j.omega.2004.05.004
  8. Chan, F.T.S. and Kumar, V. (2009) "Hybrid TSSA algorithm-based approach to solve warehouse-scheduling problems", International Journal of Production Research, DOI: 10.1080/00207540701305530.
  9. Degertekin. S.O. (2007), "A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames", Struct. Multidiscip. O., 34(4), 347-359. https://doi.org/10.1007/s00158-007-0096-4
  10. Degertekin, S.O., Saka, M.P. and Hayalioglu, M.S. (2008), "Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm", Eng. Struct., 30(1), 197-205. https://doi.org/10.1016/j.engstruct.2007.03.014
  11. Dhingra, A.K. and Bennage, W.A. (1995), "Discrete and continuous variable structural optimization using tabu search", Eng. Optimiz., 24(3), 177-196. https://doi.org/10.1080/03052159508941189
  12. Dumonteil, P. (1992), "Simple equations for effective length factors", Eng. J. AISC, 29(3), 111-115.
  13. Glover, F. (1989), "Tabu search-Part I", ORSA J. Comp., 1(3), 190-206. https://doi.org/10.1287/ijoc.1.3.190
  14. Glover, F. (1990), "Tabu search-Part II", ORSA J. Comp., 2(1): 4-32. https://doi.org/10.1287/ijoc.2.1.4
  15. Glover, F. and Laguna, M. (1997), Tabu search, Kluwer Academic Publishers, Norwell, Massachusetts.
  16. Hayalioglu, M.S. (2000), "Optimum design of geometrically non-linear elastic-plastic steel frames via genetic algorithm", Comput. Struct., 77(5): 527-538. https://doi.org/10.1016/S0045-7949(99)00221-7
  17. Hayalioglu, M.S. (2001), "Optimum load and resistance factor design of steel space frames using genetic algorithm", Struct. Multidiscip. O., 21(4), 292-299. https://doi.org/10.1007/s001580100106
  18. Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
  19. Hayalioglu, M.S. and Degertekin, S.O. (2007), "Minimum-weight design of non-linear steel frames using combinatorial optimization algorithms", Steel Compos. Struct., 7(3), 201-217. https://doi.org/10.12989/scs.2007.7.3.201
  20. Holland, J.H. (1975), Adaption in natural and artificial systems, The Universtiy of Michigan Press, Ann Arbor, MI.
  21. Huang, M.W. and Arora, J.S. (1997), "Optimal design steel structures using standard sections", Struct. Optim., 14(1), 24-35. https://doi.org/10.1007/BF01197555
  22. Jenkins, W.M. (1992), "Plane frame optimum design environment based on genetic algorithm", J. Struct. Eng. ASCE, 118(11), 3103-3112. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3103)
  23. Kameshki, E.S. and Saka, M.P. (2001), "Genetic algorithm based optimum bracing design of non-swaying tall plane frames", J. Constr. Steel Res., 57(10), 1081-1097. https://doi.org/10.1016/S0143-974X(01)00017-7
  24. Kameski, E.S. and Saka, M.P. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semirigid connections", J. Constr. Steel Res., 59(1), 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4
  25. Kargahi, M., Anderson, J.C. and Dessouky, M.M. (2006), "Structural weight optimization of frames using tabu search. I: Optimization procedure", J. Struct. Eng. ASCE, 132(12), 1858-1868. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1858)
  26. Kargahi, M. and Anderson, J.C. (2006), "Structural weight optimization of frames using tabu search. II: Evaluation and seismic performance", J. Struct. Eng. ASCE, 132(12), 1869-1879. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1869)
  27. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220 (4598), 671-680. https://doi.org/10.1126/science.220.4598.671
  28. Liu, M., Burns, S.A. and Wen, Y.K. (2006), "Genetic algorithm based construction-conscious minimum weight design of seismic steel moment-resisting frames", J. Struct. Eng. ASCE, 132(1), 50-58. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(50)
  29. Mantawy, A.H., Abdel-Magid, Y.L. and Selim, S.Z. (1997), "A new simulated annealing-based tabu search algorithm for unit commitment", Proc. IEEE Int. Conf . Sys. Man. Cybernetics, 3, 2432-2437.
  30. Metropolis, N., Rosenbluth, A,, Teller, A. and Teller E. (1953), "Equation of state calculations by fast computing machines", J. Chem. Phys., 21, 1087-1092. https://doi.org/10.1063/1.1699114
  31. Mishra, N., Prakash, Tiwari, M.K, Shankar, R. and Chan, F.T.S. (2005), "Hybrid tabu-simulated annealing based approach to solve multi-constraint product mix decision problem", Expert Syst. Appl., 29(2), 446-454. https://doi.org/10.1016/j.eswa.2005.04.044
  32. Ongsakul, W. and Bhasaputra, P. (2002), "Optimal power flow with FACTS devices by hybrid TS/SA approach", Int. J. Elect. Power, 24(10), 851-857. https://doi.org/10.1016/S0142-0615(02)00006-6
  33. Park, H.S. and Sung, C.W. (2002), "Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers", Comput. Struct., 80(14-15), 1305-1316. https://doi.org/10.1016/S0045-7949(02)00073-1
  34. Pezeshk, S., Camp, C.V. and Chen, D. (2000), "Design of nonlinear framed structures using genetic optimization", J. Struct. Eng. ASCE, 126(3), 382-388. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
  35. Rao, A.R.M. and Arvind, N. (2007), "Optimal stacking sequence design of laminated composite structures using tabu embedded simulated annealing", Struct. Eng. Mech., 25(2), 239-268. https://doi.org/10.12989/sem.2007.25.2.239
  36. Swarnkar, R. and Tiwari, M.K. (2004), "Modeling machine loading problem of FMSs and its solution methodology using a hybrid tabu search and simulated annealing-based approach", Robot. CIM-Int. Manuf., 20(3), 199-209. https://doi.org/10.1016/j.rcim.2003.09.001
  37. Toropov, V.V. and Mahfouz, S.Y. (2001), "Design optimization of structural steelwork using a genetic algorithm, FEM and a system of design rules", Eng. Computation, 18(3-4), 437-459. https://doi.org/10.1108/02644400110387118
  38. Uniform Building Code. (1997), International Conference of Building Officials, Whittier, California.
  39. Zhang, D.F. and Deng, A.S. (2005), "An effective hybrid algorithm for the problem of packing circles into a larger containing circle", Comput. Oper. Res., 32(8), 1941-1951. https://doi.org/10.1016/j.cor.2003.12.006
  40. Zolfaghari, S., Liang, M. (1999), "Jointly solving the group scheduling and machining speed selection problems: a hybrid tabu search and simulated annealing approach", Int. J. Production Res., 37(10), 2377-2397. https://doi.org/10.1080/002075499190815

Cited by

  1. Performance of Shuffled Frog-Leaping Algorithm in Finance-Based Scheduling vol.26, pp.3, 2012, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000157
  2. Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review vol.2013, 2013, https://doi.org/10.1155/2013/271031
  3. An Enhanced Imperialist Competitive Algorithm for optimum design of skeletal structures 2018, https://doi.org/10.1016/j.swevo.2017.12.001
  4. Optimum Seismic Design of 3D Irregular Steel Frames Using Recently Developed Metaheuristic Algorithms vol.32, pp.3, 2018, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000760
  5. Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm vol.12, pp.6, 2012, https://doi.org/10.12989/scs.2012.12.6.505
  6. Optimum design of steel bridges including corrosion effect using TLBO vol.63, pp.5, 2008, https://doi.org/10.12989/sem.2017.63.5.607
  7. A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.153
  8. Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795