References
- American Institute of Steel Construction. (1989), Manual of steel construction: allowable stress design, Chicago, Illionis.
- American Institute of Steel Construction. (2001), Manual of steel construction: load and resistance factor design, Chicago, Illionis.
- Balling, R.J. (1991), "Optimal steel frame design by simulated annealing", J. Struct. Eng. ASCE, 117(6), 1780-1795. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1780)
- Bennage, W.A. (1994), "Structural optimization using simulated annealing and tabu search", MSc Thesis, The University of Wisconsin-Milwaukee.
- Bennage, W.A. and Dhingra, A.K. (1995), "Single and multiobjective structural optimization in discrete continuous variables using simulated annealing", Int. J. Numer. Meth. Eng., 38(16), 2753- 2773. https://doi.org/10.1002/nme.1620381606
- Camp, C., Pezeshk, S. and Cao, G. (1998) "Optimized design of two-dimensional structures using a genetic algorithm", J. Struct. Eng. ASCE, 124(5), 551-559. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(551)
- Chan, F.T.S., Chung, S.H. and Wadhwa, S. (2005) "A hybrid genetic algorithm for production and distribution", Omega- Int. J. Manage. S., 33(4), 345-355. https://doi.org/10.1016/j.omega.2004.05.004
- Chan, F.T.S. and Kumar, V. (2009) "Hybrid TSSA algorithm-based approach to solve warehouse-scheduling problems", International Journal of Production Research, DOI: 10.1080/00207540701305530.
- Degertekin. S.O. (2007), "A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames", Struct. Multidiscip. O., 34(4), 347-359. https://doi.org/10.1007/s00158-007-0096-4
- Degertekin, S.O., Saka, M.P. and Hayalioglu, M.S. (2008), "Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm", Eng. Struct., 30(1), 197-205. https://doi.org/10.1016/j.engstruct.2007.03.014
- Dhingra, A.K. and Bennage, W.A. (1995), "Discrete and continuous variable structural optimization using tabu search", Eng. Optimiz., 24(3), 177-196. https://doi.org/10.1080/03052159508941189
- Dumonteil, P. (1992), "Simple equations for effective length factors", Eng. J. AISC, 29(3), 111-115.
- Glover, F. (1989), "Tabu search-Part I", ORSA J. Comp., 1(3), 190-206. https://doi.org/10.1287/ijoc.1.3.190
- Glover, F. (1990), "Tabu search-Part II", ORSA J. Comp., 2(1): 4-32. https://doi.org/10.1287/ijoc.2.1.4
- Glover, F. and Laguna, M. (1997), Tabu search, Kluwer Academic Publishers, Norwell, Massachusetts.
- Hayalioglu, M.S. (2000), "Optimum design of geometrically non-linear elastic-plastic steel frames via genetic algorithm", Comput. Struct., 77(5): 527-538. https://doi.org/10.1016/S0045-7949(99)00221-7
- Hayalioglu, M.S. (2001), "Optimum load and resistance factor design of steel space frames using genetic algorithm", Struct. Multidiscip. O., 21(4), 292-299. https://doi.org/10.1007/s001580100106
- Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
- Hayalioglu, M.S. and Degertekin, S.O. (2007), "Minimum-weight design of non-linear steel frames using combinatorial optimization algorithms", Steel Compos. Struct., 7(3), 201-217. https://doi.org/10.12989/scs.2007.7.3.201
- Holland, J.H. (1975), Adaption in natural and artificial systems, The Universtiy of Michigan Press, Ann Arbor, MI.
- Huang, M.W. and Arora, J.S. (1997), "Optimal design steel structures using standard sections", Struct. Optim., 14(1), 24-35. https://doi.org/10.1007/BF01197555
- Jenkins, W.M. (1992), "Plane frame optimum design environment based on genetic algorithm", J. Struct. Eng. ASCE, 118(11), 3103-3112. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3103)
- Kameshki, E.S. and Saka, M.P. (2001), "Genetic algorithm based optimum bracing design of non-swaying tall plane frames", J. Constr. Steel Res., 57(10), 1081-1097. https://doi.org/10.1016/S0143-974X(01)00017-7
- Kameski, E.S. and Saka, M.P. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semirigid connections", J. Constr. Steel Res., 59(1), 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4
- Kargahi, M., Anderson, J.C. and Dessouky, M.M. (2006), "Structural weight optimization of frames using tabu search. I: Optimization procedure", J. Struct. Eng. ASCE, 132(12), 1858-1868. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1858)
- Kargahi, M. and Anderson, J.C. (2006), "Structural weight optimization of frames using tabu search. II: Evaluation and seismic performance", J. Struct. Eng. ASCE, 132(12), 1869-1879. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1869)
- Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220 (4598), 671-680. https://doi.org/10.1126/science.220.4598.671
- Liu, M., Burns, S.A. and Wen, Y.K. (2006), "Genetic algorithm based construction-conscious minimum weight design of seismic steel moment-resisting frames", J. Struct. Eng. ASCE, 132(1), 50-58. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(50)
- Mantawy, A.H., Abdel-Magid, Y.L. and Selim, S.Z. (1997), "A new simulated annealing-based tabu search algorithm for unit commitment", Proc. IEEE Int. Conf . Sys. Man. Cybernetics, 3, 2432-2437.
- Metropolis, N., Rosenbluth, A,, Teller, A. and Teller E. (1953), "Equation of state calculations by fast computing machines", J. Chem. Phys., 21, 1087-1092. https://doi.org/10.1063/1.1699114
- Mishra, N., Prakash, Tiwari, M.K, Shankar, R. and Chan, F.T.S. (2005), "Hybrid tabu-simulated annealing based approach to solve multi-constraint product mix decision problem", Expert Syst. Appl., 29(2), 446-454. https://doi.org/10.1016/j.eswa.2005.04.044
- Ongsakul, W. and Bhasaputra, P. (2002), "Optimal power flow with FACTS devices by hybrid TS/SA approach", Int. J. Elect. Power, 24(10), 851-857. https://doi.org/10.1016/S0142-0615(02)00006-6
- Park, H.S. and Sung, C.W. (2002), "Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers", Comput. Struct., 80(14-15), 1305-1316. https://doi.org/10.1016/S0045-7949(02)00073-1
- Pezeshk, S., Camp, C.V. and Chen, D. (2000), "Design of nonlinear framed structures using genetic optimization", J. Struct. Eng. ASCE, 126(3), 382-388. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
- Rao, A.R.M. and Arvind, N. (2007), "Optimal stacking sequence design of laminated composite structures using tabu embedded simulated annealing", Struct. Eng. Mech., 25(2), 239-268. https://doi.org/10.12989/sem.2007.25.2.239
- Swarnkar, R. and Tiwari, M.K. (2004), "Modeling machine loading problem of FMSs and its solution methodology using a hybrid tabu search and simulated annealing-based approach", Robot. CIM-Int. Manuf., 20(3), 199-209. https://doi.org/10.1016/j.rcim.2003.09.001
- Toropov, V.V. and Mahfouz, S.Y. (2001), "Design optimization of structural steelwork using a genetic algorithm, FEM and a system of design rules", Eng. Computation, 18(3-4), 437-459. https://doi.org/10.1108/02644400110387118
- Uniform Building Code. (1997), International Conference of Building Officials, Whittier, California.
- Zhang, D.F. and Deng, A.S. (2005), "An effective hybrid algorithm for the problem of packing circles into a larger containing circle", Comput. Oper. Res., 32(8), 1941-1951. https://doi.org/10.1016/j.cor.2003.12.006
- Zolfaghari, S., Liang, M. (1999), "Jointly solving the group scheduling and machining speed selection problems: a hybrid tabu search and simulated annealing approach", Int. J. Production Res., 37(10), 2377-2397. https://doi.org/10.1080/002075499190815
Cited by
- Performance of Shuffled Frog-Leaping Algorithm in Finance-Based Scheduling vol.26, pp.3, 2012, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000157
- Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review vol.2013, 2013, https://doi.org/10.1155/2013/271031
- An Enhanced Imperialist Competitive Algorithm for optimum design of skeletal structures 2018, https://doi.org/10.1016/j.swevo.2017.12.001
- Optimum Seismic Design of 3D Irregular Steel Frames Using Recently Developed Metaheuristic Algorithms vol.32, pp.3, 2018, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000760
- Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm vol.12, pp.6, 2012, https://doi.org/10.12989/scs.2012.12.6.505
- Optimum design of steel bridges including corrosion effect using TLBO vol.63, pp.5, 2008, https://doi.org/10.12989/sem.2017.63.5.607
- A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.153
- Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795