DOI QR코드

DOI QR Code

Buckling of restrained steel columns due to fire conditions

  • Hozjan, Tomaz (University of Ljubljana, Faculty of Civil and Geodetic Engineering) ;
  • Planinc, Igor (University of Ljubljana, Faculty of Civil and Geodetic Engineering) ;
  • Saje, Miran (University of Ljubljana, Faculty of Civil and Geodetic Engineering) ;
  • Srpcic, Stanislav (University of Ljubljana, Faculty of Civil and Geodetic Engineering)
  • Received : 2007.08.23
  • Accepted : 2008.04.08
  • Published : 2008.04.25

Abstract

An analytical procedure is presented for the determination of the buckling load and the buckling temperature of a straight, slender, geometrically perfect, axially loaded, translationally and rotationally restrained steel column exposed to fire. The exact kinematical equations of the column are considered, but the shear strain is neglected. The linearized stability theory is employed in the buckling analysis. Behaviour of steel at the elevated temperature is assumed in accordance with the European standard EC 3. Theoretical findings are applied in the parametric analysis of restrained columns. It is found that the buckling length factor decreases with temperature and depends both on the material model and stiffnesses of rotational and translational restraints. This is in disagreement with the buckling length for intermediate storeys of braced frames proposed by EC 3, where it is assumed to be temperature independent. The present analysis indicates that this is a reasonable approximation only for rather stiff rotational springs.

Keywords

References

  1. Ali, F. and O'Connor, D. (2001), "Structural performance of rotationally restrained steel columns in fire", Fire Safety J., 36(7), 679-691. https://doi.org/10.1016/S0379-7112(01)00017-0
  2. Cheong-Siat-Moy, F. (1997), "K-factors for braced frames", Eng. Struct., 19(9), 760-763. https://doi.org/10.1016/S0141-0296(97)00129-6
  3. Eckert, E. R. G. and Drake, R. M. (1972), Analysis of Heat And Mass Transfer, McGraw-Hill Book Co., New York.
  4. Eurocode 3 (2003), Design of Steel Structures, Part 1.2: Structural fire design (final draft), European Committee for Standardization, Brussels.
  5. Franssen, J. M. and Dotreppe. J. C. (1992), "Fire resistance of columns in steel frames", Fire Safety J., 19(23), 159-175. https://doi.org/10.1016/0379-7112(92)90031-7
  6. Franssen, J. M., Talamona, D., Kruppa, J. and Cajot, L. G. (1998), "Stability of steel columns in case of fire: Experimental evaluation", J. Struct Eng ASCE, 124(2), 158-163. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:2(158)
  7. Gomes, F. C. T., Providence e Costa, P. M., Rodrigues. J. P. C. and Neves, I. C. (2007), "Buckling length of a steel column for fire design", Eng. Struct., accepted for publication.
  8. Hozjan, T., Planinc, I., Saje, M. and Srpcic, S. (2007), "Buckling of an axially restrained steel column under fire loading", submitted for publication.
  9. Huang, Z. F. and Tan, K. H. (2003), "Rankine approach for re resistance of axially and exurally restrained steel columns", J. Constr. Steel Res., 59(12), 1553-1571. https://doi.org/10.1016/S0143-974X(03)00103-2
  10. Huang, Z. F. and Tan, K. H. (2004), "Effects of external bending moments and heating schemes on the responses of thermally restrained steel columns", Eng. Struct., 26(6), 769-780. https://doi.org/10.1016/j.engstruct.2004.01.010
  11. Huang, Z. F. and Tan, K. H. (2007), "Structural response of restrained steel columns at elevated temperatures. Part 2: FE simulation with focus on experimental secondary effects", Eng. Struct., accepted for publication.
  12. ISO 834 (1975), Fire resistance tests-elements of building constructions, International Standard
  13. Keller, H. B. (1970), "Nonlinear bifurcation", J. Diff. Eq., 7(3), 417-434. https://doi.org/10.1016/0022-0396(70)90090-2
  14. Kishi, N., Chen, W. F., Goto, Y. and Komuro, M. (1998), "Effective length factor of columns in flexibly jointed and braced frames", J. Const. Steel Res., 47(1-2), 93-118. https://doi.org/10.1016/S0143-974X(98)80104-1
  15. Krauberger, N., Saje, M., Planinc, I. and Bratina, S. (2007), "Exact buckling load of a restrained RC column", Struct. Eng. Mech., 27(3), 293-310. https://doi.org/10.12989/sem.2007.27.3.293
  16. Liu, Y. and Xu, L. (2005), "story - based stability analysis of multistory unbraced frames", Struct. Eng. Mech., 19, 679-705. https://doi.org/10.12989/sem.2005.19.6.679
  17. Lopes, A. M. G., Vaz, G. C. and Santiago, A. (2005), "Numerical predictions of the timedependent temperature field for the 7th Cardington compartment fire test", Steel Compos. Struct., 5(6), 421-441. https://doi.org/10.12989/scs.2005.5.6.421
  18. Magnusson, S. E. and Thelandersson, S. (1970), "Temperature-time curves of complete process of fire development", Acta Polytecnica Scandinavica, Civil Engineering and Building Construction Series, No. 65, Stockholm.
  19. Mahini, M. R. and Seyyedian, H. (2006), "Effective length factor for columns in braced frames considering axial forces on restraining members", Struct. Eng. Mech., 22(6), 685-700. https://doi.org/10.12989/sem.2006.22.6.685
  20. Planinc, I. and Saje, M. (1999), "A quadratically convergent algorithm for the computation of stability points: the application of the determinant of the tangent stiffness matrix", Comput. Meth. Appl. Mech. Eng., 169(1-2), 89-105. https://doi.org/10.1016/S0045-7825(98)00178-9
  21. Reissner, E. (1972), "On one-dimensional finite-strain beam theory: The plane problem", J. Appl. Math. Phys. (ZAMP), 23(5), 795-804. https://doi.org/10.1007/BF01602645
  22. Shanley, F. R. (1947), "Inelastic column theory", J. Aero. Sci., 14, 261-264. https://doi.org/10.2514/8.1346
  23. Tan, K. H., Toh, W. S., Huang, Z. F. and Phng, G. H. (2007), "Structural response of restrained steel columns at elevated temperatures. Part 1: Experiments", Eng. Struct., accepted for publication.
  24. Valente, J. C. and Neves, I. C. (1999), "Fire resistance of steel columns with elastically restrained axial elongation and bending", J. Constr. Steel. Res., 52(3), 319-331. https://doi.org/10.1016/S0143-974X(99)00033-4
  25. Wang, C. M., Wang, C. Y. and Reddy, J. N. (2005), "Exact solutions for buckling of structural members", CRC Press LLC.
  26. Wang, Y. C. and Davies, J. M. (2003), "Fire test of non-sway loaded and rotationally restrained steel column assemblies", J. Constr. Steel Res., 59(3), 359-383. https://doi.org/10.1016/S0143-974X(02)00035-4
  27. White, D. W. and Hajjar, J. F. (1997), "Buckling models and stability design of steel frames: a unified approach", J. Constr. Steel Res., 42(3), 171-207. https://doi.org/10.1016/S0143-974X(97)00014-X
  28. Xu, L., Liu, Y. and Chen, J. (2001), "Stability of unbraced frames under non-proportional loading", Struct. Eng. Mech., 11(1), 1-16. https://doi.org/10.12989/sem.2001.11.1.001
  29. Xu, L. and Liu, Y. (2002), "Story stability of semi-braced steel frames", J. Const. Steel Res., 58(4), 467-491. https://doi.org/10.1016/S0143-974X(01)00063-3

Cited by

  1. Buckling of timber columns exposed to fire vol.46, pp.7, 2011, https://doi.org/10.1016/j.firesaf.2011.07.003
  2. Thermoelastic buckling of steel columns with load-dependent supports vol.47, pp.4, 2012, https://doi.org/10.1016/j.ijnonlinmec.2012.03.004
  3. Semi-analytical buckling analysis of reinforced concrete columns exposed to fire vol.71, 2015, https://doi.org/10.1016/j.firesaf.2014.11.018
  4. Nonlinear instability problems including localized plastic failure and large deformations for extreme thermo-mechanical loads vol.3, pp.1, 2014, https://doi.org/10.12989/csm.2014.3.1.089
  5. Thermal buckling of rotationally restrained steel columns vol.66, pp.6, 2010, https://doi.org/10.1016/j.jcsr.2010.01.010
  6. Time-dependent buckling analysis of SiO2 nanoparticles reinforced concrete columns exposed to fire vol.20, pp.2, 2008, https://doi.org/10.12989/cac.2017.20.2.119
  7. Behaviour of axially-restrained tubular compression members exposed to varying thermal loads vol.179, pp.None, 2008, https://doi.org/10.1016/j.jcsr.2021.106525