References
- Antonio, C. C. and Hoffbauer, L. N. (2007), "Uncertainty analysis based on sensitivity applied to angle-ply composite structures", Reliability Engineering and System Safety, 92, 1353-1362. https://doi.org/10.1016/j.ress.2006.09.006
- Deodatis, G. (1991), "Weighted integral method I: stochastic stiffness matrix", J. Engng Mech. 117, 1851-1864. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:8(1851)
- Ganesan, K. and Kowda, V. K. (2005), "Buckling of composite beam-columns with stochastic properties", Reinforced Plastics Compos, 24, 513-531. https://doi.org/10.1177/0731684405045017
- Ghanem, R. (1999), "Ingredients for a general purpose stochastic finite elements implementation", Comput. Methods Appl. Mech. Engrg. 168, 19-34. https://doi.org/10.1016/S0045-7825(98)00106-6
- Ghanem, R. G. and Spanos, P. D. (1991), "Spectral stochastic finite element formulation for reliability analysis", J. Engng Mech., ASCE, 10, 2351-2372.
- Kaminski, M. (2006), "On generalized stochastic perturbation-based finite element method", Commun. Numer. Meth. Engng. 22, 23-31.
- Kaminski, M. and Kleiber, M. (2000), "Perturbation based stochastic finite element method for homogenization of two-phase elastic composites", Comp Structures, 78, 811-826. https://doi.org/10.1016/S0045-7949(00)00116-4
- Kleiber, M. and Hien, T. (1992), The stochastic finite element method, John Wiley and Sons, New York, USA
- Lal, A., Singh, B. and Kumar, N. R. (2007), "Natural fequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct Eng Mech, 27, 199-222. https://doi.org/10.12989/sem.2007.27.2.199
- Ngah, M. F. and Young, A. (2007), "Application of the spectral stochastic finite element method for performance prediction of composite structures", Composite Structures, 78, 447-456. https://doi.org/10.1016/j.compstruct.2005.11.009
- Papadopoulos, V. and Papadrakakis, M. (1997), "Stochastic finite element-based reliability analysis of space frames", Prob. Eng. Mech. 13, 53-65.
- PEER (Pacific Earthquake Engineering Research Centre), http://peer.berkeley.edu/smcat/data, 2007.
- Pilkey, W. D. (2002), "Analysis and Design of Elastic Beams-Computational Methods", Wiley, New York.
- Sapountzakis, E. J. (2004), "Dynamic analysis of composite steel-concrete structures with deformable connection", Computers and Structures, 82, 717-729. https://doi.org/10.1016/j.compstruc.2004.02.012
- Sapountzakis, E. J. and Mokos, V. G. (2007), "Vibration analysis of 3-D composite beam elements including warping and shear deformation effects", J Sound Vib, 306, 818-834. https://doi.org/10.1016/j.jsv.2007.06.021
- Sapountzakis, E. J. and Mokos, V. G. (2007), "3-D beam element of composite cross section including warping and shear deformation effects", Comput Struct, 85, 102-116. https://doi.org/10.1016/j.compstruc.2006.09.003
- Shinozuka, M. (1972), "Monte Carlo Simulation of structural dynamics", Computers Struct, 2, 865-874.
- Stefanou, G. and Papadrakakis, M. (2004), "Stochastic finite element analysis of shells with combined random material and geometric properties", Comput. Methods Appl Mech Eng, 193, 140-160.
- uake Engineering Research Centre), http://peer.berkeley.edu/smcat/data, 2007.
- Vellascoa, P. C. G., Andradeca, S. A. L., Silvab, J. G. S., Limaa, L. R. O. and Brito, O. (2006), "A parametric analysis of steel and composite portal frames with semi-rigid connections", Engineering Structures, 28, 543-556. https://doi.org/10.1016/j.engstruct.2005.09.010
- Wang, J. F. and Li, G .Q. (2007), "Testing of semi-rigid steel-concrete composite frames subjected to vertical loads", Eng Struct, 29, 1903-1916. https://doi.org/10.1016/j.engstruct.2006.10.014
- Yamazaki, F., Shinozuka, M. and Dasgupta, G. (1988), "Neumann expansion for stochastic finite element analysis", J. Eng. Mech., 114, 1335-1354. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)
- Zhang, J. and Ellingwood, B. (1996), "SFEM for reliability of structures with material nonlinearities", J Struct Eng-ASCE, 122, 701-704. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(701)
Cited by
- Interval analysis of acoustic field with uncertain-but-bounded parameters vol.112-113, 2012, https://doi.org/10.1016/j.compstruc.2012.08.010
- Stochastic finite element analysis of long-span bridges with CFRP cables under earthquake ground motion vol.35, pp.3, 2010, https://doi.org/10.1007/s12046-010-0013-1
- Hybrid uncertain analysis of acoustic field with interval random parameters vol.256, 2013, https://doi.org/10.1016/j.cma.2012.12.016
- The stochastic finite element method: Past, present and future vol.198, pp.9-12, 2009, https://doi.org/10.1016/j.cma.2008.11.007
- Probabilistic interval analysis for structures with uncertainty vol.32, pp.3, 2010, https://doi.org/10.1016/j.strusafe.2010.01.002
- Unified analysis approach for the energy flow in coupled vibrating systems with two types of hybrid uncertain parameters vol.70-71, 2016, https://doi.org/10.1016/j.ymssp.2015.08.009
- Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method vol.70, 2016, https://doi.org/10.1016/j.enganabound.2016.06.002
- Stochastic finite element response analysis using random eigenfunction expansion vol.192, 2017, https://doi.org/10.1016/j.compstruc.2017.06.014
- Hybrid uncertain analysis for the prediction of exterior acoustic field with interval and random parameters vol.141, 2014, https://doi.org/10.1016/j.compstruc.2014.05.004
- Generalized Neumann Expansion and Its Application in Stochastic Finite Element Methods vol.2013, 2013, https://doi.org/10.1155/2013/325025
- Homogenization-based interval analysis for structural-acoustic problem involving periodical composites and multi-scale uncertain-but-bounded parameters vol.141, pp.4, 2017, https://doi.org/10.1121/1.4980144
- Hybrid Uncertain Analysis for Exterior Acoustic Field Prediction with Interval Random Parameters vol.15, pp.02, 2018, https://doi.org/10.1142/S0219876218500068
- Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads vol.9, pp.6, 2009, https://doi.org/10.12989/scs.2009.9.6.499
- The performance prediction and optimization of the fiber-reinforced composite structure with uncertain parameters vol.164, 2017, https://doi.org/10.1016/j.compstruct.2016.12.074
- Response analysis of uncertain structural-acoustic system based on multi-convex set model vol.67, 2016, https://doi.org/10.1016/j.jfluidstructs.2016.10.007
- A priori error estimation for the stochastic perturbation method vol.286, 2015, https://doi.org/10.1016/j.cma.2014.11.044
- Hybrid uncertain analysis for structural–acoustic problem with random and interval parameters vol.332, pp.11, 2013, https://doi.org/10.1016/j.jsv.2012.12.028
- Effects of random material and geometrical properties on structural safety of steel-concrete composite systems 2010, https://doi.org/10.1002/cnm.1377
- A random field model based on nodal integration domain for stochastic analysis of heat transfer problems vol.122, 2017, https://doi.org/10.1016/j.ijthermalsci.2017.08.009
- Stochastic finite element analysis of composite plates considering spatial randomness of material properties and their correlations vol.11, pp.2, 2008, https://doi.org/10.12989/scs.2011.11.2.115
- A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability vol.38, pp.4, 2008, https://doi.org/10.12989/sem.2011.38.4.503
- A homogenization-based Chebyshev interval finite element method for periodical composite structural-acoustic systems with multi-scale interval parameters vol.233, pp.10, 2008, https://doi.org/10.1177/0954406218819030
- Perturbation based stochastic isogeometric analysis for bending of functionally graded plates with the randomness of elastic modulus vol.17, pp.7, 2008, https://doi.org/10.1590/1679-78256066
- Moment-Based Hybrid Polynomial Chaos Method for Interval and Random Uncertain Analysis of Periodical Composite Structural-Acoustic System with Multi-Scale Parameters vol.18, pp.4, 2008, https://doi.org/10.1142/s0219876220500413