Acknowledgement
Supported by : National Science Council
References
- Aitcin, P.-C. and Neville, A. (1993), "High-performance concrete demystified", Concrete Int., Jan. 1993, 21-26.
- Basma, A.A., Barakat, S., and Al-Oraimi, S. (1999), "Prediction of cement degree of hydration using artificial neural networks", ACI Mater. J., 96(2), 167-172.
- Brown, D.A., Murthy, P.L. N., and Berke, L. (1991), "Computational simulation of composite ply micromechanics using artificial neural networks", Microcomputers in Civ. Eng., 6(2), 87-97.
- Domone, P.L.J. and Soutsos, M.N. (1994). "An approach to the proportioning of high-strength concrete mixes", Concr. Int., October 1994, 26-31.
- Faroug, F., Szwaborski, J., and Wild, S. (1999), "Influence of superplasticizers on workability of concrete", J. Mater. Civ. Eng., 11(2), 151-157. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:2(151)
- Ghaboussi, J., Garrett, J.H., and Wu, X. (1991), "Knowledge-based modeling of material behavior with neural networks", J. Eng. Mech., 117(1), 132-153. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
- Goh, A.T.C. (1995a), Neural networks for evaluating CPT calibration chamber test data", Micro. Civ. Eng., 10(2), 147-151. https://doi.org/10.1111/j.1467-8667.1995.tb00277.x
- Goh, A.T.C. (1995b), "Prediction of ultimate shear strength of deep beams using neural networks", ACI Struct. J., 92(1), 28-32.
- Haj-Ali, R.M., Kurtis, K.E., and Akshay, R. (2001), "Neural network modeling of concrete expansion during long-term sulfate exposure", ACI Mater. J., 98(1), 36-43.
- Haykin, S. (2005), Neural Networks: A Comprehensive Foundation, Prentice Hall PTR, NJ.
- Kim, H., Rauch, A.F., and Haas, C. T. (2004), "Automated quality assessment of stone aggregates based on laser imaging and a neural network", J. Comput. Civil Eng., 18(1), 58-64. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:1(58)
- Kim, J.-I., Kim, D.K., Feng, M. Q., and Yazdani, F. (2004), "Application of neural networks for estimation of concrete strength", J. Mater. Civil Eng., 16(3), 257-264. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257)
- Kwan, A.K.H. (2000), "Use of condensed silica fume for making high-strength, self-consolidating concrete". Can. J. Civil Eng., 27(4), 620-627. https://doi.org/10.1139/l99-091
- Malhotra, V.M. (1984), "Superplasticizers: reducing water in concrete", Civil Eng.-ASCE, 54(12), 56-59.
- Naik, T.R. and Ramme, B.W. (1989), "High-strength concrete containing large quantities of fly ash", ACI Mater. J., 86(2), 110-116.
- Nehdi, M. Djebbar, Y., and Khan, A. (2001), "Neural network model for preformed- foam cellular concrete", ACI Mater. J., 98(5), 402-409.
- Nehdi, M., El-Chabib, H., and El-Naggar, M.H. (2001), "Predicting performance of self-compacting concrete mixtures using artificial neural networks", ACI Mater. J., 98(5), 394-401.
- Olek, J. and Diamond, S. (1989), "Proportioning of constant paste composition fly ash concrete mixes", ACI Mater. J., 86(2), 159-166.
- Peng, J., Li, Z., and Ma, B. (2002), "Neural network analysis of chloride diffusion in concrete". J. Mater. Civil Eng., 14(4), 327-333. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:4(327)
- Pratt, D. and Sansalone, M. (1992), "Impact-echo signal interpretation using artificial intelligence", ACI Mater. J., 89(2), 178-187.
- Punkki, J., Golaszewski, J., and Gjorv, O.E. (1996), "Workability loss of high-strength concrete", ACI Materials J., 93(5), 427-431.
- Stegemann, J.A. and Buenfeld, R.N. (2004), "Mining of existing data for cement-solidified wastes using neural networks", J. Environ. Eng., 130(5), 508-515. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:5(508)
- Tang, C.-W. and Yen, T. (2000), "Prediction of the ultimate shear strength of high-and normal-strength concrete beams without stirrups using neural networks". in High Strength/High Performance Concrete, Konig, G.. et al. (eds), 1, 595-608.
- Welstead, S.T. (1994), "Neural network and fuzzy logic applications in C/C++", John Wiley & Sons, New York.
- Yeh, I-Cheng. (1998a), "Modeling concrete strength with augment-neuron networks", J. Mater. Civil Eng., 10(4), 263-268. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(263)
- Yeh, I-Cheng. (1998b), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I-Cheng. (1999), "Design of high performance concrete mixture using neural networks and nonlinear programming", J. Comput. Civil Eng., 13(1), 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
- Yeh, I-Cheng and Chen, J.W. (2005), "Modeling workability of concrete using design of experiments and artificial neural networks", J. Technol., 20(2), 153-162.
- Yen, T., Tang, C.-W., Chang, C.-S., and Chen, K.-H. (1999), "Flow behaviour of high strength high-performance concrete", Cement Concrete Comp., 1999, 21(5), 413-424. https://doi.org/10.1016/S0958-9465(99)00026-8
Cited by
- Effect of cross-linked polycarboxylate-type superplasticizers on the properties in cementitious system vol.131, pp.19, 2014, https://doi.org/10.1002/app.40856
- Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength vol.49, 2013, https://doi.org/10.1016/j.conbuildmat.2013.08.078
- An analysis of accuracy-diversity trade-off for hybrid combined system with multiobjective predictor selection vol.40, pp.4, 2014, https://doi.org/10.1007/s10489-013-0507-8
- Modeling of Thermal Conductivity of Concrete with Vermiculite by Using Artificial Neural Networks Approaches vol.26, pp.4, 2013, https://doi.org/10.1080/08916152.2012.669810
- Prediction of the transfer length of prestressing strands with neural networks vol.12, pp.2, 2013, https://doi.org/10.12989/cac.2013.12.2.187
- A comparative modeling study to estimate wear of concrete vol.24, pp.3-4, 2014, https://doi.org/10.1007/s00521-012-1277-7
- Machine learning in concrete strength simulations: Multi-nation data analytics vol.73, 2014, https://doi.org/10.1016/j.conbuildmat.2014.09.054
- Smart Artificial Firefly Colony Algorithm-Based Support Vector Regression for Enhanced Forecasting in Civil Engineering vol.30, pp.9, 2015, https://doi.org/10.1111/mice.12121
- GRADIENT: Grammar-driven genetic programming framework for building multi-component, hierarchical predictive systems vol.39, pp.18, 2012, https://doi.org/10.1016/j.eswa.2012.05.076
- Sparse Additive Gaussian Process with Soft Interactions vol.07, pp.04, 2017, https://doi.org/10.4236/ojs.2017.74039
- Comparison of artificial neural networks and general linear model approaches for the analysis of abrasive wear of concrete vol.25, pp.8, 2011, https://doi.org/10.1016/j.conbuildmat.2011.03.040
- Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive vol.20, pp.2, 2013, https://doi.org/10.1007/s12613-013-0715-6
- Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0246-7
- Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network vol.8, pp.3, 2008, https://doi.org/10.12989/cac.2011.8.3.279
- Modeling the compressive strength of cement mortar nano-composites vol.10, pp.1, 2012, https://doi.org/10.12989/cac.2012.10.1.049
- The effects of replacement fly ash with diatomite in geopolymer mortar vol.9, pp.6, 2008, https://doi.org/10.12989/cac.2012.9.6.427
- An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming vol.19, pp.6, 2017, https://doi.org/10.12989/cac.2017.19.6.651
- Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete vol.13, pp.5, 2008, https://doi.org/10.3390/ma13051023
- Variable selection in multivariate multiple regression vol.15, pp.7, 2020, https://doi.org/10.1371/journal.pone.0236067
- A model to characterize the effect of particle size of fly ash on the mechanical properties of concrete by the grey multiple linear regression vol.26, pp.2, 2008, https://doi.org/10.12989/cac.2020.26.2.175
- A hybrid optimized learning‐based compressive performance of concrete prediction using GBMO‐ANFIS classifier and genetic algorithm reduction vol.22, pp.suppl1, 2008, https://doi.org/10.1002/suco.201900155
- An Intelligent Analysis Method for Human-Induced Vibration of Concrete Footbridges vol.21, pp.1, 2008, https://doi.org/10.1142/s0219455421500139
- Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites vol.28, pp.1, 2008, https://doi.org/10.12989/cac.2021.28.1.055