References
- Ben Dhia, H. (1998), "Problmes mecaniques multi-echelles : La methode Arlequin", C. R. Acad. Sci. Paris, 326(Serie II b) 899-904.
- Ben Dhia, H. and Rateau, G. (2005), "The Arlequin method as a flexible engineering design too", Int. J. Numer. Meth. Eng., 62,1442-1462. https://doi.org/10.1002/nme.1229
- Berton, S. and Bolander, J. E. (2006), "Crack band model of fracture in irregular lattices", Comput. Methods Appl. Mech. Eng., 192, 7172-7181.
- Calvetti, F., Combe, G. and Lanier, J. (1997), "Experimental micromechanical analysis of a 2D granular material: Relation between structure evolution and loading path", Mech. Cohesive-Frict. Mater., 2(2), 121-163.
- Cusatis, G. and Cedolin, L. (2007), "Tow-scale study of concrete fracturing behavior", Eng. Fract. Mech., 74, 3-17. https://doi.org/10.1016/j.engfracmech.2006.01.021
- Cundall, P. A. and Strack, O. D. L. (1979), "A discrete numerical model for granular assemblies", Gotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Curtin, W. A. and Miller, R. E. (2003), "Atomistic/continuum coupling in computational material science", Model. Simul. Mater. Sci. Eng., 11(3), R33-R68. https://doi.org/10.1088/0965-0393/11/3/201
- Frangin, E. Marin, P. and Daudeville, L. (2006), "On the use of combined finite/discrete element method for impacted concrete structures", J. Phys. IV France 134, 461-466. https://doi.org/10.1051/jp4:2006134071
- Frangin, E. Marin, P. and Daudeville, L. (2006), "Discrete-continuum coupling for impacted structures", Proceedings of the Eigth International Conference on Computational Structures Technology, B.H.V Topping, Civil-Comp Press, Stirling, United Kingdom, paper 167.
- Gabet, T. Malcot, Y. and Daudeville, L. (2008), "Triaxial behaviour of concrete under high stresses: Influence of the loading path on compaction and limit states", Cement Concrete Res., 38(3), 403-412. https://doi.org/10.1016/j.cemconres.2007.09.029
- Hentz S., Daudeville L. and Donze F. V. (2004a), "Identification and validation of a discrete element model for concrete", J. Eng. Mech., 130, 709-719. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)
- Hentz S., Daudeville L. and Donz F. (2004b), "Discrete element modelling of concrete submitted to dynamic loading at high strain rate", Comput. Struct., 82, 2509-2524. https://doi.org/10.1016/j.compstruc.2004.05.016
- Issa, J. A. and Nelson, R. B. (1992), "Numerical analysis of micromechanical behavior of granular material", Eng. Computation, 9, 211-223. https://doi.org/10.1108/eb023860
- Jodrey, W. and Torry, E. (1985), "Computer simulation of close random packing of equal spheres", Physical Review A, 32(4), 2347-2351. https://doi.org/10.1103/PhysRevA.32.2347
- Kawai, T. (1978) "New discrete models and their application to seismic response analysis of structures", Nucl. Eng. Des., 48, 207-229. https://doi.org/10.1016/0029-5493(78)90217-0
- Leite, J. P. B., Slowik, V. and Mihasshi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34, 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
- Liao, C.-L., Chang, T.-P. and Young, D.-H. (1997), "Stress-strain relationship for granular materials based on the hypothesis of best fit", Int. J. Solids Struct., 34(31-32), 4087-4100. https://doi.org/10.1016/S0020-7683(97)00015-2
- Prado, E. P. and Van Mier, J. G. M. (2003), "Effect of particle structure on mode I fracture process in concrete", Eng. Fract. Mech., 70, 1793-1807. https://doi.org/10.1016/S0013-7944(03)00125-5
- Rousseau, J. Frangin, E. Marin, P. and Daudeville, L. (2007), "Some aspects of DE/FE combined method: model identification and combined Method", Proceeding of COMPLAS 2007, Barcelona, September.
- Schlangen, E. and Garboczi, E. J. (1997), "Fracture simulations of concrete using lattice models: computational aspects", Eng. Fract. Mech., 57(2-3), 319-332. https://doi.org/10.1016/S0013-7944(97)00010-6
- Xiao, S. P. and Belytschko, T. (2004) "A bridging domain method for coupling continua with molecular dynamics", Comput. Methods Appl. Mech. Eng. 193 1645-1669. https://doi.org/10.1016/j.cma.2003.12.053
Cited by
- Mixed DEM/FEM Modeling of Advanced Damage in Reinforced Concrete Structures vol.143, pp.2, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001173
- Multidomain finite and discrete elements method for impact analysis of a concrete structure vol.31, pp.11, 2009, https://doi.org/10.1016/j.engstruct.2009.07.001
- A wear particle-based model of friction in a polymer–metal high pressure contact vol.286-287, 2012, https://doi.org/10.1016/j.wear.2011.06.028
- Progressive collapse simulation based on DEM for single-layer reticulated domes vol.128, 2017, https://doi.org/10.1016/j.jcsr.2016.09.025
- Advanced simulation of damage of reinforced concrete structures under impact vol.16, pp.9, 2012, https://doi.org/10.1080/19648189.2012.699747
- DEM-based simulation of concrete structures on GPU vol.16, pp.9, 2012, https://doi.org/10.1080/19648189.2012.716590
- A coupled discrete/continuous method for computing lattices. Application to a masonry-like structure vol.48, pp.21, 2011, https://doi.org/10.1016/j.ijsolstr.2011.07.002
- Packing spherical discrete elements for large scale simulations vol.199, pp.25-28, 2010, https://doi.org/10.1016/j.cma.2010.01.016
- Three dimensional SPH–FEM gluing for simulation of fast impacts on concrete slabs vol.89, pp.23-24, 2011, https://doi.org/10.1016/j.compstruc.2011.06.002
- A GPU-Based Parallel Procedure for Nonlinear Analysis of Complex Structures Using a Coupled FEM/DEM Approach vol.2013, 2013, https://doi.org/10.1155/2013/618980
- A discrete element model of concrete under high triaxial loading vol.33, pp.9, 2011, https://doi.org/10.1016/j.cemconcomp.2011.01.003
- Concrete structures under impact vol.15, pp.sup1, 2011, https://doi.org/10.1080/19648189.2011.9695306
- A discrete element/shell finite element coupling for simulating impacts on reinforced concrete structures vol.19, pp.1-3, 2010, https://doi.org/10.3166/ejcm.19.153-164
- Coupled Discrete Element/Finite Element Method for the Analysis of Large Reinforced Concrete Structures Submitted to an Impact vol.82, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.82.284
- Combination of DEM/FEM for Progressive Collapse Simulation of Domes Under Earthquake Action vol.18, pp.1, 2018, https://doi.org/10.1007/s13296-018-0323-4
- Discrete element modelling of concrete structures under hard impact by ogive-nose steel projectiles vol.227, pp.1-2, 2018, https://doi.org/10.1140/epjst/e2018-00059-y
- High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part II: numerical simulation and validation vol.40, pp.5, 2008, https://doi.org/10.12989/sem.2011.40.5.617
- An Improved Discontinuous Deformation Analysis to Solve Both Shear and Tensile Failure Problems vol.23, pp.5, 2008, https://doi.org/10.1007/s12205-019-2019-5