DOI QR코드

DOI QR Code

Damage prediction in the vicinity of an impact on a concrete structure: a combined FEM/DEM approach

  • Rousseau, Jessica (Universit Joseph Fourier/INPG/CNRS Laboratoire Sols, Solides, Structures) ;
  • Frangin, Emmanuel (Universit Joseph Fourier/INPG/CNRS Laboratoire Sols, Solides, Structures) ;
  • Marin, Philippe (Universit Joseph Fourier/INPG/CNRS Laboratoire Sols, Solides, Structures) ;
  • Daudeville, Laurent (Universit Joseph Fourier/INPG/CNRS Laboratoire Sols, Solides, Structures)
  • Received : 2007.11.01
  • Accepted : 2008.04.01
  • Published : 2008.08.25

Abstract

This article focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. The proposed approach is then applied to a rock impact on a concrete slab in order to validate the coupled method and compare computation times.

Keywords

References

  1. Ben Dhia, H. (1998), "Problmes mecaniques multi-echelles : La methode Arlequin", C. R. Acad. Sci. Paris, 326(Serie II b) 899-904.
  2. Ben Dhia, H. and Rateau, G. (2005), "The Arlequin method as a flexible engineering design too", Int. J. Numer. Meth. Eng., 62,1442-1462. https://doi.org/10.1002/nme.1229
  3. Berton, S. and Bolander, J. E. (2006), "Crack band model of fracture in irregular lattices", Comput. Methods Appl. Mech. Eng., 192, 7172-7181.
  4. Calvetti, F., Combe, G. and Lanier, J. (1997), "Experimental micromechanical analysis of a 2D granular material: Relation between structure evolution and loading path", Mech. Cohesive-Frict. Mater., 2(2), 121-163.
  5. Cusatis, G. and Cedolin, L. (2007), "Tow-scale study of concrete fracturing behavior", Eng. Fract. Mech., 74, 3-17. https://doi.org/10.1016/j.engfracmech.2006.01.021
  6. Cundall, P. A. and Strack, O. D. L. (1979), "A discrete numerical model for granular assemblies", Gotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  7. Curtin, W. A. and Miller, R. E. (2003), "Atomistic/continuum coupling in computational material science", Model. Simul. Mater. Sci. Eng., 11(3), R33-R68. https://doi.org/10.1088/0965-0393/11/3/201
  8. Frangin, E. Marin, P. and Daudeville, L. (2006), "On the use of combined finite/discrete element method for impacted concrete structures", J. Phys. IV France 134, 461-466. https://doi.org/10.1051/jp4:2006134071
  9. Frangin, E. Marin, P. and Daudeville, L. (2006), "Discrete-continuum coupling for impacted structures", Proceedings of the Eigth International Conference on Computational Structures Technology, B.H.V Topping, Civil-Comp Press, Stirling, United Kingdom, paper 167.
  10. Gabet, T. Malcot, Y. and Daudeville, L. (2008), "Triaxial behaviour of concrete under high stresses: Influence of the loading path on compaction and limit states", Cement Concrete Res., 38(3), 403-412. https://doi.org/10.1016/j.cemconres.2007.09.029
  11. Hentz S., Daudeville L. and Donze F. V. (2004a), "Identification and validation of a discrete element model for concrete", J. Eng. Mech., 130, 709-719. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)
  12. Hentz S., Daudeville L. and Donz F. (2004b), "Discrete element modelling of concrete submitted to dynamic loading at high strain rate", Comput. Struct., 82, 2509-2524. https://doi.org/10.1016/j.compstruc.2004.05.016
  13. Issa, J. A. and Nelson, R. B. (1992), "Numerical analysis of micromechanical behavior of granular material", Eng. Computation, 9, 211-223. https://doi.org/10.1108/eb023860
  14. Jodrey, W. and Torry, E. (1985), "Computer simulation of close random packing of equal spheres", Physical Review A, 32(4), 2347-2351. https://doi.org/10.1103/PhysRevA.32.2347
  15. Kawai, T. (1978) "New discrete models and their application to seismic response analysis of structures", Nucl. Eng. Des., 48, 207-229. https://doi.org/10.1016/0029-5493(78)90217-0
  16. Leite, J. P. B., Slowik, V. and Mihasshi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34, 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
  17. Liao, C.-L., Chang, T.-P. and Young, D.-H. (1997), "Stress-strain relationship for granular materials based on the hypothesis of best fit", Int. J. Solids Struct., 34(31-32), 4087-4100. https://doi.org/10.1016/S0020-7683(97)00015-2
  18. Prado, E. P. and Van Mier, J. G. M. (2003), "Effect of particle structure on mode I fracture process in concrete", Eng. Fract. Mech., 70, 1793-1807. https://doi.org/10.1016/S0013-7944(03)00125-5
  19. Rousseau, J. Frangin, E. Marin, P. and Daudeville, L. (2007), "Some aspects of DE/FE combined method: model identification and combined Method", Proceeding of COMPLAS 2007, Barcelona, September.
  20. Schlangen, E. and Garboczi, E. J. (1997), "Fracture simulations of concrete using lattice models: computational aspects", Eng. Fract. Mech., 57(2-3), 319-332. https://doi.org/10.1016/S0013-7944(97)00010-6
  21. Xiao, S. P. and Belytschko, T. (2004) "A bridging domain method for coupling continua with molecular dynamics", Comput. Methods Appl. Mech. Eng. 193 1645-1669. https://doi.org/10.1016/j.cma.2003.12.053

Cited by

  1. Mixed DEM/FEM Modeling of Advanced Damage in Reinforced Concrete Structures vol.143, pp.2, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001173
  2. Multidomain finite and discrete elements method for impact analysis of a concrete structure vol.31, pp.11, 2009, https://doi.org/10.1016/j.engstruct.2009.07.001
  3. A wear particle-based model of friction in a polymer–metal high pressure contact vol.286-287, 2012, https://doi.org/10.1016/j.wear.2011.06.028
  4. Progressive collapse simulation based on DEM for single-layer reticulated domes vol.128, 2017, https://doi.org/10.1016/j.jcsr.2016.09.025
  5. Advanced simulation of damage of reinforced concrete structures under impact vol.16, pp.9, 2012, https://doi.org/10.1080/19648189.2012.699747
  6. DEM-based simulation of concrete structures on GPU vol.16, pp.9, 2012, https://doi.org/10.1080/19648189.2012.716590
  7. A coupled discrete/continuous method for computing lattices. Application to a masonry-like structure vol.48, pp.21, 2011, https://doi.org/10.1016/j.ijsolstr.2011.07.002
  8. Packing spherical discrete elements for large scale simulations vol.199, pp.25-28, 2010, https://doi.org/10.1016/j.cma.2010.01.016
  9. Three dimensional SPH–FEM gluing for simulation of fast impacts on concrete slabs vol.89, pp.23-24, 2011, https://doi.org/10.1016/j.compstruc.2011.06.002
  10. A GPU-Based Parallel Procedure for Nonlinear Analysis of Complex Structures Using a Coupled FEM/DEM Approach vol.2013, 2013, https://doi.org/10.1155/2013/618980
  11. A discrete element model of concrete under high triaxial loading vol.33, pp.9, 2011, https://doi.org/10.1016/j.cemconcomp.2011.01.003
  12. Concrete structures under impact vol.15, pp.sup1, 2011, https://doi.org/10.1080/19648189.2011.9695306
  13. A discrete element/shell finite element coupling for simulating impacts on reinforced concrete structures vol.19, pp.1-3, 2010, https://doi.org/10.3166/ejcm.19.153-164
  14. Coupled Discrete Element/Finite Element Method for the Analysis of Large Reinforced Concrete Structures Submitted to an Impact vol.82, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.82.284
  15. Combination of DEM/FEM for Progressive Collapse Simulation of Domes Under Earthquake Action vol.18, pp.1, 2018, https://doi.org/10.1007/s13296-018-0323-4
  16. Discrete element modelling of concrete structures under hard impact by ogive-nose steel projectiles vol.227, pp.1-2, 2018, https://doi.org/10.1140/epjst/e2018-00059-y
  17. High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part II: numerical simulation and validation vol.40, pp.5, 2008, https://doi.org/10.12989/sem.2011.40.5.617
  18. An Improved Discontinuous Deformation Analysis to Solve Both Shear and Tensile Failure Problems vol.23, pp.5, 2008, https://doi.org/10.1007/s12205-019-2019-5