DOI QR코드

DOI QR Code

A methodology for remaining life prediction of concrete structural components accounting for tension softening effect

  • Murthy, A. Rama Chandra (Scientists, Structural Engineering Research Centre, CSIR Campus) ;
  • Palani, G.S. (Scientists, Structural Engineering Research Centre, CSIR Campus) ;
  • Iyer, Nagesh R. (Scientists, Structural Engineering Research Centre, CSIR Campus) ;
  • Gopinath, Smitha (Scientists, Structural Engineering Research Centre, CSIR Campus)
  • Received : 2006.09.26
  • Accepted : 2008.06.17
  • Published : 2008.06.25

Abstract

This paper presents methodologies for remaining life prediction of plain concrete structural components considering tension softening effect. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. A methodology to account for tension softening effects in the computation of SIF and remaining life prediction of concrete structural components has been presented. The tension softening effects has been represented by using any one of the models mentioned above. Numerical studies have been conducted on three point bending concrete structural component under constant amplitude loading. Remaining life has been predicted for different loading cases and for various tension softening models. The predicted values have been compared with the corresponding experimental observations. It is observed that the predicted life using bi-linear model and power curve model is in close agreement with the experimental values. Parametric studies on remaining life prediction have also been conducted by using modified bilinear model. A suitable value for constant of modified bilinear model is suggested based on parametric studies.

Keywords

References

  1. Baluch, M. H, Qureshy, A. B. and Azad, A. K. (1987), "Fatigue crack propagation in plain concrete", SEM/RILEM Intl. Conf. on Fracture of Concrete and Rock, Houston, 80-87.
  2. Barenblatt, G. I. (1959), "Equilibrium cracks formed during brittle fracture", Prikl Mat Mech, 23.
  3. Bazant, Z. P. (1976), "Instability, ductility and size effect in strain-softening concrete", J. Eng. Mech., ASCE, 102, 331-344.
  4. Bazant, Z. P. (2002), "Concrete fracture model: testing and practice", Eng. Fract. Mech., 69, 165-205. https://doi.org/10.1016/S0013-7944(01)00084-4
  5. Bazant, Z. P. and Cedolin, L. (1979), "Blunt crack bond propagation in finite element analysis", J. Eng. Mech., ASCE, 105(2), 297-315.
  6. Bazant, Z. P. and William, F. Schell. (1993), "Fatigue fracture of high strength concrete and size effect", ACI Mater. J., 90(5), 472-478.
  7. Bazant, Z. P. and Xu, K. (1991), "Size effect in fatigue fracture of concrete", ACI Mater. J., 88(4),390-399.
  8. Cedolin, L., Deipoli, S. and Iori, I. (1987), "Tensile behaviour of concrete", J. Eng. Mech. ASCE, 113(3), 431-449. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:3(431)
  9. Du, J., Yon, J. H., Hawkins, N. M. and Kobayashi, A. S. (1990), "Analysis of the fracture process zone of a propagating concrete crack using moire interferometry in micromechanics of failure of quasi-brittle materials", Elsevier Applied Science. London, 146-155.
  10. Dugdale, D. S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phy. Solids, 8.
  11. Figueiras, J. A. and Owen, D. R. J. (1984), "Nonlinear analysis of reinforced concrete shell structures", Int. Conf on Computer Aided Analysis and Design of Concrete Structures - Part I. Split, Yugoslavia, 509-532.
  12. Footer, M. L., Mai, Y. W. and Cotterell, B. (1986), "Crack growth resistance curves in strain-softening materials", J. Mech. Physics Solids, 34(6), 593-607. https://doi.org/10.1016/0022-5096(86)90039-6
  13. Gasser, Thomas C. and Holzapfel, Gerhard A. (2005), "Modeling 3D crack propagation in unreinforced concrete using PUFEM", Comput Methods Appl. Mech. Eng., 194, 2859-2896. https://doi.org/10.1016/j.cma.2004.07.025
  14. Gopalaratnam, V. S. and Shah, S. P. (1985), "Softening response of plain concrete in direct tension", ACI J., 82(3), 310-323.
  15. Hillerborg, A., Modeer, M. and Petersson, P. E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  16. Hordijk, D. A. (1991), "Local approach to fatigue of concrete", Ph.D thesis, Technical University of Delft.
  17. Ingraffea, A. R. (1977), "Discrete fracture propagation in rock: Laboratory tests and finite element analysis", Ph.D. Dissertation, University of Colorado. Boulder.
  18. Kaplan, M. E. (1961), "Crack propagation and fracture of concrete", J. American Concrete Inst., 58(5), 591-610.
  19. Liaw, B. M., Jeang, F. L., Du, J. J., Hawkins, N. M. and Kobayashi, A. S. (1990), "Improved nonlinear model for concrete fracture", J. Eng. Mech., ASCE, 116(2), 429-445. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:2(429)
  20. Mario, M. Attard and Francis, Tin-Loi (2005), "Numerical simulation of quasi-brittle fracture in concrete", Eng. Fract. Mech., 72(3), 387-411. https://doi.org/10.1016/j.engfracmech.2004.03.012
  21. Matsumoto, Takashi, and Li, Victor, C. (1999), "Fatigue life analysis of fiber reinforced concrete with a fracture mechanics based model", Cement Concrete Compos, 21, 249-261. https://doi.org/10.1016/S0958-9465(99)00004-9
  22. Mu, Bin, Subramaniam, V. K. and Shah, S. P. (2004), "Failure mechanism of concrete under fatigue compressive load", J. Mater. Civ. Eng-ASCE, 16(6), 566-572. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(566)
  23. Perdikaris P. C. and Calomino (1987), "Kinetics of crack growth in plain concrete", Proc. Int. Conf. Fracture. of Concrete and Rock, Houston, 96-101.
  24. Prasad, M. V. K. V. and Krishnamoorthy, C. S. (2002), "Computational model for discrete crack growth in plain and reinforced concrete", Comput Methods Appl. Mech. Eng., 191, 2699-2725. https://doi.org/10.1016/S0045-7825(02)00210-4
  25. Raghu Prasad, B. K. and Vidya Sagar, R. (2006), "Numerical modelling of fracture and size effect in plain concrete", J. the Institution of Engineers (India), 86, 182-186.
  26. Ramsamooj, D. V. (1994), "Prediction of fatigue life of plain concrete beams from fracture tests", J. Test. Eval., 22(3), 183-194. https://doi.org/10.1520/JTE11810J
  27. Reinhardt, H. W. (1985), "Crack softening zone in plain concrete under static loading", Cement Concrete Res., 15, 42-52. https://doi.org/10.1016/0008-8846(85)90007-9
  28. Roelfstra, R. E. and Wittmann, F. H. (1986) "A numerical method to link strain softening with fracture in concrete fracture toughness and fracture energy in concrete", Elsevier Science, Amsterdam, 163-175.
  29. Shah, S. P., Swartz, S. E. and C Ouyang, C. (1995), Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and other Quasi-brittle Material, John Wiley & Sons, Inc, New York.
  30. Slowik, V., Angelo, G. P. and Saouraa, V. E. (1996), "Fracture of concrete under variable amplitude fatigue loading", ACI Mater. J., 93(3), 272-283.
  31. Slowik, V., Beate Villmann, B., Bretschneider, N. and Villmann, T. (2006), "Computational aspects of inverse analyses for determining softening curves of concrete", Comput. Methods Appl. Mech. Eng., 195, 7223-7236. https://doi.org/10.1016/j.cma.2005.04.021
  32. Stuart, E. S. (1982), "Crack growth and fracture in plain concrete-Static versus fatigue loading", Proc. Fatigue of Concrete Structures, SP-75, 3, ACI, Detroit, 47-68.
  33. Subramaniam, V. K., Neil, E. F., Popovics, S. J. and Shah, S. P. (2000), "Crack propagation in flexural fatigue of concrete", J. Eng. Mech., 126(9), 891-898. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(891)
  34. Tada, H., Paris, P. C. and Irwin, G. R. (1985), The Stress Analysis of Cracks Handbook, 2nd ed., Paris Productions, St. Louis. MO.
  35. Toumi, Bascos A. and Turatsinze, A. (1998), "Crack propagation in concrete subjected to flexural cyclic loading", Mater. Struct., 31, 451-458. https://doi.org/10.1007/BF02480468
  36. Wu, Z., Yang, S., Hu, X. and Zheng, J. (2006), "An analytical model to predict the effective fracture toughness of concrete for three-point bending notched beams", Eng. Fract. Mech., 73(15), 2166-2191. https://doi.org/10.1016/j.engfracmech.2006.04.001

Cited by

  1. Numerical and statistical analysis about displacements in reinforced concrete beams using damage mechanics vol.10, pp.3, 2008, https://doi.org/10.12989/cac.2012.10.3.307