DOI QR코드

DOI QR Code

A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications

  • Yun, Gun-Jin (Department of Civil Engineering, The University of Akron) ;
  • Harmon, Thomas G. (Department of Mechanical, Aerospace and Structural Engineering, Washington University in St. Louis, St. Louis) ;
  • Dyke, Shirley J. (Department of Mechanical, Aerospace and Structural Engineering, Washington University in St. Louis, St. Louis) ;
  • So, Migeum (Department of Mechanical, Aerospace and Structural Engineering, Washington University in St. Louis, St. Louis)
  • 투고 : 2007.09.21
  • 심사 : 2008.06.23
  • 발행 : 2008.06.25

초록

In this paper, a total strain-based hysteretic material model based on MCFT is proposed for non-linear finite element analysis of reinforced concrete structures. Although many concrete models have been proposed for simulating behavior of structures under cyclic loading conditions, accurate simulations remain challenging due to uncertainties in materials, pitfalls of crude assumptions of existing models, and limited understanding of failure mechanisms. The proposed model is equipped with a fully generalized hysteresis rule and is formulated for 2D plane stress non-linear finite element analysis. The proposed model has been formulated in a tangent stiffness-based finite element scheme so that it can be used for most general finite element analysis packages. Moreover, it eliminates the need to check that tensile stresses can be transmitted across a crack. The tension stiffening model is a function of the bar orientation and any orientation can be accommodated. The proposed model has been verified with a series of experimental results of 2D RC planar panels. This study also demonstrates how parameters of the proposed model associated with cyclic damage modeling influences the pinched cyclic shear behavior.

키워드

과제정보

연구 과제 주관 기관 : National Science Foundation

참고문헌

  1. Bahn, B. Y. and Hsu, C. T. T. (1998), "Stress-strain behaviour of concrete under cyclic loading", ACI Mater. J., 95(2), 178-193.
  2. Belarbi, A. and Hsu, T. T. C. (1991) Constitutive Laws of Reinforced Concrete in Biaxial Tension Compression, University of Houston: Houston.
  3. Belarbi, A. and Hsu, T. T. C. (1994), "Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete", ACI Struct. J., 91(4), 465-474.
  4. Belarbi, A. and Hsu, T. T. C. (1995), "Constitutive laws of softened concrete in biaxial tension-compression", ACI Struct. J., 92(5), 562-573.
  5. Buyukozturk, O. and Tseng, T. M. (1984), "Concrete in biaxial cyclic compression", J. Struct. Eng. ASCE, 110(3), 461-476. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:3(461)
  6. Chen, W. F. (1988), "Evaluation of plasticity-based constitutive models for concrete materials", Solid Mech. Archives, 13(1), 1-63.
  7. Cotsovos, D. M. and Pavlovic, M. N. (2005), "Numerical investigation of RC structural walls subjected to cyclic loading", Comput. Concrete, 2(3), 215-238. https://doi.org/10.12989/cac.2005.2.3.215
  8. Crisfield, M. A. and Wills, J. (1989), "Analysis of R/C panels using different concrete models", J. Eng. Mechanics-ASCE, 115(3), 578-597. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:3(578)
  9. De Borst, R. and Feenstra, P. H. (1995), "A plasticity model and algorithm for mode-i cracking in concrete", Inter. J. Numer. Methods Eng., 38, 2509-2529. https://doi.org/10.1002/nme.1620381503
  10. Elmorsi, M., Kianoush, M. R., and Tso, W. K. (1998), "Nonlinear analysis of cyclically loaded reinforced concrete structures", ACI Struct. J., 95(6), 725-739.
  11. He, W., Wu, Y. F., Liew, K. M., and Wu, Z. S. (2006), "A 2D total strain based constitutive model for predicting the behaviors of concrete structures", Int. J. Eng. Sci., 44(18-19), 1280-1303. https://doi.org/10.1016/j.ijengsci.2006.07.007
  12. Hsu, T. T. C., Mansour, M. Y., Mo, Y. L., and Zhong, J. (2006), "Cyclic softened membrane model for nonlineawr finite element analysis of concrete structures", SP-237 ACI Finite Element Analysis of Reinforced Concrete Structures: 71-98.
  13. Hsu, T. T. C. and Zhang, L. X. (1997), "Nonlinear analysis of membrane elements by fixed-angle softened-truss model", ACI Struct. J., 94(5), 483-492.
  14. Hsu, T. T. C. and Zhu, R. R. H. (2002), "Softened membrane model for reinforced concrete elements in shear", ACI Struct. J., 99(4), 460-469.
  15. Karsan, I. D. and Jirsa, J. O. (1969), "Behavior of concrete under compressive loading", J. Struct. Div., ASCE, 95, 2543-2563.
  16. Kent, D. C. and Park, R. (1971), "Flexural members with confined concrete", J. Struct. Divi., ASCE, 97, 1969-1990.
  17. Kim, T. H., Lee, K. M., and Shin, H. M. (2002), "Nonlinear analysis of reinforced concrete shells using layered elements with drilling degree of freedom", ACI Struct. J., 99(4), 418-426.
  18. Kratzig, W. B. and Polling, R. (2004), "An elasto-plastic damage model for reinforced concrete with minimum number of material parameters", Comput. Struct., 82(15-16), 1201-1215. https://doi.org/10.1016/j.compstruc.2004.03.002
  19. Kupfer, H., Hilsdorf, H. K., and Rusch, H. (1969), "Behavior of concrete under biaxial stress", J. American Concrete Inst., 66(8), 656-666.
  20. Kwak, H. G. and Kim, D. Y. (2004), "Material nonlinear analysis of RC shear walls subject to cyclic loadings", Eng. Struct., 26(10), 1423-1436. https://doi.org/10.1016/j.engstruct.2004.05.014
  21. Mansour, M. and Hsu, T. T. C. (2005a), "Behavior of reinforced concrete elements under cyclic shear. I: Experiments", J. Struct. Eng.-ASCE, 131(1), 44-53. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(44)
  22. Mansour, M. and Hsu, T. T. C. (2005b), "Behavior of reinforced concrete elements under cyclic shear. II: Theoretical model", J. Struct. Eng.-ASCE, 131(1), 54-65. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(54)
  23. Mansour, M., Lee, J. Y., and Hsu, T. T. C. (2001), "Cyclic stress-strain curves of concrete and steel bars in membrane elements", J. Struct. Eng.-ASCE, 127(12), 1402-1411. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1402)
  24. Menegotto, M. and Pinto, P. (1973), "Method of analysis for cyclically-loaded R/C plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", in IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads. Lisbon.
  25. Mikame, A., Uchida, K., and Noguchi, H. (1991), "A study of compressive deterioration of cracked concrete", in Proceedings, International Workshop on Finite Element Analysis of Reinforced Concrete. Columbia University, New York.
  26. Monti, G. and Nuti, C. (1992), "Nonlinear cyclic behavior of reinforcing bars including buckling", J. Struct. Eng. ASCE, 118(12), 3268-3284. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:12(3268)
  27. Noh, H. C. and Choi, C. K. (2006), "Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines", Struct. Eng. Mech., 22(2), 223-240. https://doi.org/10.12989/sem.2006.22.2.223
  28. Palermo, D. and Vecchio, F. J. (2003), "Compression field modeling of reinforced concrete subjected to reversed loading: formulation", ACI Struct. J., 100, 616-625.
  29. Palermo, D. and Vecchio, F. J. (2004), "Compression field modeling of reinforced concrete subjected to reversed loading: Verification", ACI Struct. J., 101(2), 155-164.
  30. Palermo, D. and Vecchio, F. J. (2007), "Simulation of cyclically loaded concrete structures based on the finiteelement method", J. Struct. Eng.-ASCE, 133(5), 728-738. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(728)
  31. Pang, X. B. D. and Hsu, T. T. C. (1996), "Fixed angle softened truss model for reinforced concrete", ACI Struct. J., 93(2), 197-207.
  32. Park, H. and Kim, J. Y. (2005), "Hybrid plasticity model for reinforced concrete in cyclic shear", Eng. Struct., 27(1), 35-48. https://doi.org/10.1016/j.engstruct.2004.08.013
  33. Scott, B. S., Park, R., and Priestley, M. J. N. (1982), "Stress strain behavior of concrete confined by overlapping hoops at low and high strain rates", ACI Struct. J., 79(1), 13-27.
  34. Stevens, N. J., Uzumeri, S. M., and Collins, M. P., Analytical Modeling of Reinforced Concrete Subjected to Monotonic and Reversed Loadings. 1987, Department of Civil Engineering, University of Toronto: Toronto. p. 201.
  35. Stevens, N. J., Uzumeri, S. M., and Collins, M. P. (1991a), "Reinforced-concrete subjected to reversed cyclic shear - experiments and constitutive model", ACI Struct. J., 88(2), 135-146.
  36. Stevens, N. J., Uzumeri, S. M., Collins, M. P., and Will, G. T. (1991b), "Constitutive model for reinforcedconcrete finite-element analysis", ACI Struct. J., 88(1), 49-59.
  37. Vecchio, F. J. (1992), "Finite-element modeling of concrete expansion and confinement", J. Struct. Eng.-ASCE, 118(9), 2390-2406. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2390)
  38. Vecchio, F. J. (1999), "Towards cyclic load modeling of reinforced concrete", ACI Struct. J., 96(2), 193-202.
  39. Vecchio, F. J. and Collins, M. P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231.
  40. Wang, T. J. and Hsu, T. T. C. (2001), "Nonlinear finite element analysis of concrete structures using new constitutive models", Comput. Struct., 79(32), 2781-2791. https://doi.org/10.1016/S0045-7949(01)00157-2
  41. Willam, K., Pramono, E., and Sture, S. (1987), "Fundamental issues of smeared crack models", Proceedings of the SEM-RILEM International Conference on Fracture of Concrete and Rocks. Houston, Texas.
  42. Yankelevsky, D. Z. and Reinhardt, H. W. (1989), "Uniaxial behavior of concrete in cyclic tension", J. Struct. Eng. ASCE, 115(1), 166-182. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(166)
  43. Zhang, L. X. B. and Hsu, T. T. C. (1998), "Behavior and analysis of 100 MPa concrete membrane elements", J. Struct. Eng.-ASCE, 124(1), 24-34. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:1(24)
  44. Zhong, J. (2005) "Model-Based Simulation of Reinforced Concrete Plane Stress Structures", in Department of Civil Engineering, University of Houston: Houston. Ph.D. thesis
  45. Zhu, R. R. H., Hsu, T. T. C., and Lee, J. Y. (2001), "Rational shear modulus for smeared-crack analysis of reinforced concrete", ACI Struct. J., 98(4), 443-450.

피인용 문헌

  1. A reinforced concrete frame element with shear effect vol.36, pp.1, 2008, https://doi.org/10.12989/sem.2010.36.1.057
  2. Debonding failure analysis of FRP-retrofitted concrete panel under blast loading vol.38, pp.4, 2008, https://doi.org/10.12989/sem.2011.38.4.479