Acknowledgement
Supported by : National Science Council
References
- Aitcin, P. C. and Neville, A. (1993), "High-performance concrete demystified", Concrete Int., 1993, 21-26.
- Basma, A. A., Barakat, S., and Al-Oraimi, S. (1999), "Prediction of cement degree of hydration using artificial neural networks", J. Mater. in Civ. Eng., 96(2), 167-172.
- Brown, D. A., Murthy, P. L. N., and Berke, L. (1991), "Computational simulation of composite ply micromechanics using artificial neural networks", Micro. in Civ. Eng., 6, 87-97.
- Faroug, F., Szwaborski, J., and Wild, S. (1999), "Influence of superplasticizers on workability of concrete", J. Mater. Civ. Eng., 11(2), 151-157. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:2(151)
- Ghaboussi, J., Garrett, J. H., and Wu, X. (1991), "Knowledge-based modeling of material behavior with neural networks", J. Eng. Mech., 117(1), 132-153. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
- Goh, A. T. C. (1995), "Neural networks for evaluating CPT calibration chamber test data", Micro. in Civ. Eng., 10: 147-151. https://doi.org/10.1111/j.1467-8667.1995.tb00277.x
- Haj-Ali, R. M., Kurtis, K. E., and Akshay, R. (2001), "Neural network modeling of concrete expansion during long-term sulfate exposure", J. Mater. in Civ. Eng., 98(1), 36-43.
- Ji, T. and Lin, X. J. (2006), "A mortar mix proportion design algorithm based on artificial neural networks", Comput. Concrete, 3(5), 357-373. https://doi.org/10.12989/cac.2006.3.5.357
- Kim, J. I., Kim, D. K., Feng, M. Q., and Yazdani, F. (2004), "Application of neural networks for estimation of concrete strength", J. Mater. in Civ. Eng., 16(3), 257-264. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257)
- Kwan, A. K. H. (2000), "Use of condensed silica fume for making high-strength, self-consolidating concrete", Canadian J. Civ. Eng., 27, 620-627. https://doi.org/10.1139/l99-091
- Lippmann, R. P. (1987), "An introduction to computing with neural nets", IEEE ASSP Magazine, 4(2), 4-22. https://doi.org/10.1109/MASSP.1987.1165575
- Myers, R. H., and Montgomery, D. C. (1995), Response Surface Methodology, John Wiley & Sons, Inc., New York.
- Nehdi, M., El Chabib, H., and El Naggar, M. H. (2001), "Predicting performance of self-compacting concrete mixtures using artificial neural networks", J. Mater. in Civ. Eng., 98(5), 394-401.
- Nehdi, M., Djebbar, Y. and Khan, A. (2001), "Neural network model for preformed-foam cellular concrete", J. Mater. Civ. Eng., 98(5), 402-409.
- Oh, J.-W., Lee, I.-W., Kim, J.-T., and Lee, G.-W. (1999), "Application of neural networks for proportioning of concrete mixes", J. Mater. Civ. Eng., 96(1), 61-67.
- Olek, J. and Diamond, S. (1989), "Proportioning of constant paste composition fly ash concrete mixes", ACI Mater. J., 86(2), 159-166.
- Peng, J., Li, Z. and Ma, B. (2002), "Neural network analysis of chloride diffusion in concrete", Mater. Civ. Eng., 14(4), 327-333. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:4(327)
- Punkki, J., Golaszewski, J., and Gjorv, O. E. (1996), "Workability loss of high-strength concrete", ACI Mater. J., 93(5), 427-431.
- Stegemann, J. A. and Buenfeld, N. R. (2004), "Mining of existing data for cement-solidified wastes using neural networks", J. Environ. Eng., 130(5), 508-515. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:5(508)
- Yeh, I-Cheng (1998a), Modeling concrete strength with augment-neuron networks. J. Mater. Civ. Eng. 10(4), 263-268. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(263)
- Yeh, I-Cheng (1998b), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I-Cheng (1999), "Design of high-performance concrete mixture using neural networks and nonlinear programming", J. Comput. in Civ. Eng., 13(1), 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
- Yeh, I-Cheng, Chen, I-Cheng, Ko, Tai-Zi, Peng, Chao-Che, Gan, Chun-Cheng, and Chen, J. W. (2002), "Optimum mixture design of high performance concrete using artificial neural networks", J. Technology, 17(4), 583-591.
- Yen, T., Tang, C.-W., Chang, C.-S., and Chen K.-H. (1999), "Flow behaviour of high strength high-performance concrete", Cement Concrete Compos., 21, 413-424. https://doi.org/10.1016/S0958-9465(99)00026-8
Cited by
- Modeling properties of self-compacting concrete: support vector machines approach vol.5, pp.5, 2008, https://doi.org/10.12989/cac.2008.5.5.461
- Properties of pervious concrete containing high-calcium fly ash vol.17, pp.3, 2016, https://doi.org/10.12989/cac.2016.17.3.337
- Modeling of Thermal Conductivity of Concrete with Vermiculite by Using Artificial Neural Networks Approaches vol.26, pp.4, 2013, https://doi.org/10.1080/08916152.2012.669810
- A comparative modeling study to estimate wear of concrete vol.24, pp.3-4, 2014, https://doi.org/10.1007/s00521-012-1277-7
- Comparison of artificial neural networks and general linear model approaches for the analysis of abrasive wear of concrete vol.25, pp.8, 2011, https://doi.org/10.1016/j.conbuildmat.2011.03.040
- Modelling the minislump spread of superplasticized PPC paste using RLS with the application of Random Kitchen sink vol.310, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/310/1/012035
- Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0246-7
- Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network vol.8, pp.3, 2008, https://doi.org/10.12989/cac.2011.8.3.279
- Efficiency factor of high calcium Class F fly ash in concrete vol.8, pp.5, 2011, https://doi.org/10.12989/cac.2011.8.5.583
- Modeling the compressive strength of cement mortar nano-composites vol.10, pp.1, 2012, https://doi.org/10.12989/cac.2012.10.1.049
- Application of Fuller's ideal curve and error function to making high performance concrete using rice husk ash vol.10, pp.6, 2008, https://doi.org/10.12989/cac.2012.10.6.631
- Probabilistic modeling of geopolymer concrete using response surface methodology vol.19, pp.6, 2008, https://doi.org/10.12989/cac.2017.19.6.737
- Hybrid Gaussian Process Inference Model for Construction Management Decision Making vol.19, pp.4, 2008, https://doi.org/10.1142/s0219622020500212
- Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites vol.28, pp.1, 2008, https://doi.org/10.12989/cac.2021.28.1.055