DOI QR코드

DOI QR Code

Swirl ratio effects on tornado vortices in relation to the Fujita scale

  • Hangan, H. (Alan G. Davenport Wind Engineering Group, The Boundary Layer Wind Tunnel Laboratory, The University of Western Ontario, Faculty of Engineering) ;
  • Kim, J.D. (Alan G. Davenport Wind Engineering Group, The Boundary Layer Wind Tunnel Laboratory, The University of Western Ontario, Faculty of Engineering)
  • 투고 : 2007.10.01
  • 심사 : 2008.06.18
  • 발행 : 2008.08.25

초록

Three-dimensional engineering simulations of momentum-driven tornado-like vortices are conducted to investigate the flow dynamics dependency on swirl ratio and the possible relation with real tornado Fujita scales. Numerical results are benchmarked against the laboratory experimental results of Baker (1981) for a fixed swirl ratio: S = 0.28. The simulations are then extended for higher swirl ratios up to S = 2 and the variation of the velocity and pressure flow fields are observed. The flow evolves from the formation of a laminar vortex at low swirl ratio to turbulent vortex breakdown, followed by the vortex touch down at higher swirls. The high swirl ratios results are further matched with full scale data from the Spencer, South Dakota F4 tornado of May 30, 1998 (Sarkar, et al. 2005) and approximate velocity and length scales are determined.

키워드

참고문헌

  1. Baker, D. E. (1981), "Boundary layers in laminar vortex flows", Ph.D. thesis, Purdue University.
  2. Baker, G. L. and Church, C. R. (1979), "Measurements of core radii and peak velocities in modeled atmospheric vortices", J. Atmos. Sci., 36, 2413-2424. https://doi.org/10.1175/1520-0469(1979)036<2413:MOCRAP>2.0.CO;2
  3. Bluestein, H. B., Weiss, C. C. and Pazmany, A. L. (2004), "The vertical structure of a tornado near happy, Texas, on 5 May 2002: High-Resolution, Mobile, W-band, Doppler Radar Observations", Mon. Weather Rev., 132, 2325-2337. https://doi.org/10.1175/1520-0493(2004)132<2325:TVSOAT>2.0.CO;2
  4. Brooks, H. E. (2004), "On the relationship of tornado path length and width to intensity", Weather Forecast., 19, 310-319. https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2
  5. Church, C. R., Snow, J. T., Baker, G. L. and Agee, E. M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation", J. Atmos Sci., 36, 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2
  6. Church, C. J., Snow J. T. and Agee, E. M. (1977), "Tornado vortex simulation at Purdue University", Bull. Amer. Meteor. Soc., 58, 900-908. https://doi.org/10.1175/1520-0477(1977)058<0900:TVSAPU>2.0.CO;2
  7. Davies-Jones, R. P. (1973), "The dependence of core radius on swirl ratio in a tornado simulator", J. Atmos. Sci., 30, 1427-1430. https://doi.org/10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2
  8. Fiedler, B. H. and Rotunno, R. (1986), "A theory for the maximum windspeeds in tornado-like vortices", J. Atmos Sci., 43, 2328-2340. https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2
  9. Fluent 6.2 User's Guide (2005), Fluent Inc., Lebanon.
  10. Fujita, T. T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38, 1511-1534. https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
  11. Kim, J-D., Hangan, H. (2007), "Numerical simulations of impinging jets with application to downbursts", J. Wind Eng. Ind. Aerodyn., 95(4), 279-298. https://doi.org/10.1016/j.jweia.2006.07.002
  12. Launder, B. E. (1989), "Second-moment closure and its use in modeling turbulent industrial flows", Int. J. Numer. Methods Fluids, 9, 963-965. https://doi.org/10.1002/fld.1650090806
  13. Lee, W-C., Wurman, J. (2005), "Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999", J. Atmos. Sci., 62, 2373-2394. https://doi.org/10.1175/JAS3489.1
  14. Lewellen, W. S. (1963), "A solution for three-dimensional vortex flows with strong circulation", J. Fluid Mech., 14, 420-432.
  15. Lewellen, W. S., Lewellen, D. C. and Sykes, R. I. (1997), "Large-eddy simulation of a tornado's interaction with the surface", J. Atmos. Sci. , 54, 581-605 https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2
  16. Lewellen, D. C., Lewellen, W. S. and Xia, J. (2000), "The influence of a local swirl ratio on tornado intensification near the surface", J. Atmos. Sci., 57, 527-544. https://doi.org/10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2
  17. Lewellen, D. C. and Lewellen, W. S. (2007), "Near-surface intensification of tornado vortices", J. Atmos. Sci., 64, 2176-2194. https://doi.org/10.1175/JAS3965.1
  18. Lim, T. T. and Cui, Y. D. (2003), "On the generation of a spiral-type vortex breakdown in an enclosed cylindrical container", Phys Fluids, 17, 044-105.
  19. Lugt, H. (1989), "Vortex breakdown in atmospheric columnar vortices", Bull. Amer. Meteor. Soc., 70, 1526-1537. https://doi.org/10.1175/1520-0477(1989)070<1526:VBIACV>2.0.CO;2
  20. Lund D. E. and Snow, J. (1993), "The tornado: its structure, dynamics, prediction and hazards", Geophys. Monogr. Ser. 79, 297-306. https://doi.org/10.1029/GM079p0297
  21. Nolan, D. S. and Farrell, B. F. (1999), "The structure and dynamics of tornado-like vortices", J. Atmos. Sci., 56, 2908-2936. https://doi.org/10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2
  22. Nolan, D. S. (2005), "A new scaling for tornado-like vortices", J. Atmos. Sci., 62, 2639-2646. https://doi.org/10.1175/JAS3461.1
  23. Rotunno, R. (1979), "A Study in tornado-like vortex dynamics", J. Atmos. Sci., 36, 140-155. https://doi.org/10.1175/1520-0469(1979)036<0140:ASITLV>2.0.CO;2
  24. Sarkar, P., Haan, F., Gallus, Jr., W., Le, K. and Wurman, J. (2005), "Velocity measurements in a laboratory tornado simulator and their comparison with numerical and full-scale data", 37th Joint Meeting Panel on Wind and Seismic Effects, Tsukuba, Japan, May 2005.
  25. Selvam, R. P. and Millet P. C. (2003), "Computer modeling of tornado forces on buildings", Wind Struct., 6, 209-220. https://doi.org/10.12989/was.2003.6.3.209
  26. Selvam, R. P. and Millet, P. C. (2005), "Large eddy simulation of the tornado-structure interaction to determine structural loads", Wind Struct., 8, 49-60. https://doi.org/10.12989/was.2005.8.1.049
  27. Serre, E. and Bantoux P. (2002), "Vortex breakdown in a three-dimensional swirling flow", J. Fluid Mech., 459, 347-370.
  28. Snow J. T. (1982), "A review of recent advances in tornado vortex dynamics", Rev. Geophys. Space Phys., 20, 953-964. https://doi.org/10.1029/RG020i004p00953
  29. Smith, D. R. (1987), "Effect of boundary conditions on numerically simulated tornado-like vortices", J. Atmos. Sci., 44, 648-656. https://doi.org/10.1175/1520-0469(1987)044<0648:EOBCON>2.0.CO;2
  30. Twisdale L. A. and Vickery P. J. (1992), "Research on thunderstorm wind design parameters", J. Wind Eng. Ind. Aerodyn., 41-44, 545-556.
  31. Wan, C. and Chang, C. (1972), "Measurement of the velocity field in a simulated tornado-like vortex using a three-dimensional velocity probe", J. Atmos. Sci., 29, 116-127. https://doi.org/10.1175/1520-0469(1972)029<0116:MOTVFI>2.0.CO;2
  32. Wang, H., James, D., Letchford, C. W., Peterson, R. and Snow, J. (2001), "Development of a prototype tornado simulator for the assessment of fluid-structure interaction", First American Conference on Wind Engineering, 4-6 June, 2001, Clemson, SC.
  33. Ward, N. B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J. Atmos. Sci., 29, 1194-1204. https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2
  34. Wilson, T. and Rotunno, R. (1986), "Numerical simulation of a laminar end-wall vortex and boundary layer", Phys. Fluids, 29, 3993-4005. https://doi.org/10.1063/1.865740
  35. Wurman, J. (1998), "Preliminary results from the ROTATE-98 tornado study", Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, 14-18 September, 120-123.
  36. Wurman, J. and Gill, S. (2000), "Finescale radar observations of the Dimmitt, Texas (2 June 1995), Tornado", Mon. Weather Rev., 128, 2135-2164. https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2
  37. Wurman, J. (2002), "The multiple-vortex structure of a tornado", Weather Forecast., 17, 473-500. https://doi.org/10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2
  38. Xia, J., Lewellen, W. S. and Lewellen, D. C. (2003), "Influence of Mach number on tornado corner flow dynamics", J. Atmos. Sci., 60, 2820-2825. https://doi.org/10.1175/1520-0469(2003)060<2820:IOMNOT>2.0.CO;2

피인용 문헌

  1. Effective technique to analyze transmission line conductors under high intensity winds vol.18, pp.3, 2014, https://doi.org/10.12989/was.2014.18.3.235
  2. F2 tornado velocity profiles critical for transmission line structures vol.106, 2016, https://doi.org/10.1016/j.engstruct.2015.10.020
  3. Study of the effects of translation and roughness on tornado-like vortices by large-eddy simulations vol.151, 2016, https://doi.org/10.1016/j.jweia.2016.01.006
  4. Doppler radar-derived wind field of five tornado events with application to engineering simulations vol.148, 2017, https://doi.org/10.1016/j.engstruct.2017.06.068
  5. Finite element modelling of self-supported transmission lines under tornado loading vol.18, pp.5, 2014, https://doi.org/10.12989/was.2014.18.5.473
  6. Behaviour of transmission line conductors under tornado wind vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.369
  7. Behaviour of guyed transmission line structures under tornado wind loading vol.89, pp.11-12, 2011, https://doi.org/10.1016/j.compstruc.2011.01.015
  8. Finite element modelling of pre-stressed concrete poles under downbursts and tornadoes vol.153, 2017, https://doi.org/10.1016/j.engstruct.2017.10.047
  9. Finite element analysis of interaction of tornados with a low-rise timber building vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2011.01.004
  10. Characteristics of internal pressures and net local roof wind forces on a building exposed to a tornado-like vortex vol.112, 2013, https://doi.org/10.1016/j.jweia.2012.11.005
  11. Numerical study of turbulent flow fields and the similarity of tornado vortices using large-eddy simulations vol.145, 2015, https://doi.org/10.1016/j.jweia.2015.05.008
  12. Large eddy simulations of translation and surface roughness effects on tornado-like vortices vol.104-106, 2012, https://doi.org/10.1016/j.jweia.2012.05.004
  13. Tornado hazard for structural engineering 2016, https://doi.org/10.1007/s11069-016-2392-z
  14. Current and Future Directions for Wind Research at Western: A New Quantum Leap in Wind Research through the Wind Engineering, Energy and Environment (WindEEE) Dome vol.35, pp.4, 2010, https://doi.org/10.5359/jawe.35.277
  15. Failure analysis of guyed transmission lines during F2 tornado event vol.85, 2015, https://doi.org/10.1016/j.engstruct.2014.11.045
  16. A study of tornado induced mean aerodynamic forces on a gable-roofed building by the large eddy simulations vol.146, 2015, https://doi.org/10.1016/j.jweia.2015.08.002
  17. Dependence of surface pressures on a cubic building in tornado like flow on building location and ground roughness vol.103, 2012, https://doi.org/10.1016/j.jweia.2012.02.011
  18. Effect of net structures on wall-free non-stationary air heat vortices vol.64, 2013, https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.008
  19. Characterization of tornado-like flow fields in a new model scale wind testing chamber vol.151, 2016, https://doi.org/10.1016/j.jweia.2016.02.002
  20. Reproducing tornadoes in laboratory using proper scaling vol.135, 2014, https://doi.org/10.1016/j.jweia.2014.10.008
  21. Modelling wind fields and debris flight in tornadoes vol.168, 2017, https://doi.org/10.1016/j.jweia.2017.06.017
  22. Rankine combined vortex interaction with a rectangular prism vol.29, pp.1, 2015, https://doi.org/10.1080/10618562.2015.1010524
  23. Experimental investigation of tornado-like vortex dynamics with swirl ratio: The mean and turbulent flow fields vol.98, pp.12, 2010, https://doi.org/10.1016/j.jweia.2010.10.001
  24. Effect of low-rise building geometry on tornado-induced loads vol.133, 2014, https://doi.org/10.1016/j.jweia.2014.02.001
  25. Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility vol.13, pp.1, 2008, https://doi.org/10.12989/was.2010.13.1.021
  26. Finite element modelling of transmission line structures under tornado wind loading vol.13, pp.5, 2008, https://doi.org/10.12989/was.2010.13.5.451
  27. Topographic effects on tornado-like vortex vol.27, pp.2, 2018, https://doi.org/10.12989/was.2018.27.2.123
  28. Risk-Based Reliability and Cost Analysis of Utility Poles Subjected to Tornado Hazard vol.32, pp.4, 2008, https://doi.org/10.1061/(asce)as.1943-5525.0001029
  29. Reliability-Based Assessment and Cost Analysis of Power Distribution Systems at Risk of Tornado Hazard vol.6, pp.2, 2008, https://doi.org/10.1061/ajrua6.0001055
  30. POD-based analysis of time-resolved tornado-like vortices vol.33, pp.1, 2008, https://doi.org/10.12989/was.2021.33.1.013
  31. Wind Flow Characteristics of Multivortex Tornadoes vol.22, pp.3, 2008, https://doi.org/10.1061/(asce)nh.1527-6996.0000462
  32. Characteristics of tornado wind loads and examinations of tornado wind load provisions in ASCE 7–16 vol.241, pp.None, 2008, https://doi.org/10.1016/j.engstruct.2021.112451
  33. Numerical study of tornado-borne debris on a low-rise building through large eddy simulation vol.106, pp.None, 2008, https://doi.org/10.1016/j.jfluidstructs.2021.103379
  34. Numerical study on applicability of various swirl ratio definitions to characterization of tornado-like vortex flow field vol.220, pp.None, 2008, https://doi.org/10.1016/j.jweia.2021.104841