References
- Baker, D. E. (1981), "Boundary layers in laminar vortex flows", Ph.D. thesis, Purdue University.
- Baker, G. L. and Church, C. R. (1979), "Measurements of core radii and peak velocities in modeled atmospheric vortices", J. Atmos. Sci., 36, 2413-2424. https://doi.org/10.1175/1520-0469(1979)036<2413:MOCRAP>2.0.CO;2
- Bluestein, H. B., Weiss, C. C. and Pazmany, A. L. (2004), "The vertical structure of a tornado near happy, Texas, on 5 May 2002: High-Resolution, Mobile, W-band, Doppler Radar Observations", Mon. Weather Rev., 132, 2325-2337. https://doi.org/10.1175/1520-0493(2004)132<2325:TVSOAT>2.0.CO;2
- Brooks, H. E. (2004), "On the relationship of tornado path length and width to intensity", Weather Forecast., 19, 310-319. https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2
- Church, C. R., Snow, J. T., Baker, G. L. and Agee, E. M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation", J. Atmos Sci., 36, 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2
- Church, C. J., Snow J. T. and Agee, E. M. (1977), "Tornado vortex simulation at Purdue University", Bull. Amer. Meteor. Soc., 58, 900-908. https://doi.org/10.1175/1520-0477(1977)058<0900:TVSAPU>2.0.CO;2
- Davies-Jones, R. P. (1973), "The dependence of core radius on swirl ratio in a tornado simulator", J. Atmos. Sci., 30, 1427-1430. https://doi.org/10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2
- Fiedler, B. H. and Rotunno, R. (1986), "A theory for the maximum windspeeds in tornado-like vortices", J. Atmos Sci., 43, 2328-2340. https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2
- Fluent 6.2 User's Guide (2005), Fluent Inc., Lebanon.
- Fujita, T. T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38, 1511-1534. https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
- Kim, J-D., Hangan, H. (2007), "Numerical simulations of impinging jets with application to downbursts", J. Wind Eng. Ind. Aerodyn., 95(4), 279-298. https://doi.org/10.1016/j.jweia.2006.07.002
- Launder, B. E. (1989), "Second-moment closure and its use in modeling turbulent industrial flows", Int. J. Numer. Methods Fluids, 9, 963-965. https://doi.org/10.1002/fld.1650090806
- Lee, W-C., Wurman, J. (2005), "Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999", J. Atmos. Sci., 62, 2373-2394. https://doi.org/10.1175/JAS3489.1
- Lewellen, W. S. (1963), "A solution for three-dimensional vortex flows with strong circulation", J. Fluid Mech., 14, 420-432.
- Lewellen, W. S., Lewellen, D. C. and Sykes, R. I. (1997), "Large-eddy simulation of a tornado's interaction with the surface", J. Atmos. Sci. , 54, 581-605 https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2
- Lewellen, D. C., Lewellen, W. S. and Xia, J. (2000), "The influence of a local swirl ratio on tornado intensification near the surface", J. Atmos. Sci., 57, 527-544. https://doi.org/10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2
- Lewellen, D. C. and Lewellen, W. S. (2007), "Near-surface intensification of tornado vortices", J. Atmos. Sci., 64, 2176-2194. https://doi.org/10.1175/JAS3965.1
- Lim, T. T. and Cui, Y. D. (2003), "On the generation of a spiral-type vortex breakdown in an enclosed cylindrical container", Phys Fluids, 17, 044-105.
- Lugt, H. (1989), "Vortex breakdown in atmospheric columnar vortices", Bull. Amer. Meteor. Soc., 70, 1526-1537. https://doi.org/10.1175/1520-0477(1989)070<1526:VBIACV>2.0.CO;2
- Lund D. E. and Snow, J. (1993), "The tornado: its structure, dynamics, prediction and hazards", Geophys. Monogr. Ser. 79, 297-306. https://doi.org/10.1029/GM079p0297
- Nolan, D. S. and Farrell, B. F. (1999), "The structure and dynamics of tornado-like vortices", J. Atmos. Sci., 56, 2908-2936. https://doi.org/10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2
- Nolan, D. S. (2005), "A new scaling for tornado-like vortices", J. Atmos. Sci., 62, 2639-2646. https://doi.org/10.1175/JAS3461.1
- Rotunno, R. (1979), "A Study in tornado-like vortex dynamics", J. Atmos. Sci., 36, 140-155. https://doi.org/10.1175/1520-0469(1979)036<0140:ASITLV>2.0.CO;2
- Sarkar, P., Haan, F., Gallus, Jr., W., Le, K. and Wurman, J. (2005), "Velocity measurements in a laboratory tornado simulator and their comparison with numerical and full-scale data", 37th Joint Meeting Panel on Wind and Seismic Effects, Tsukuba, Japan, May 2005.
- Selvam, R. P. and Millet P. C. (2003), "Computer modeling of tornado forces on buildings", Wind Struct., 6, 209-220. https://doi.org/10.12989/was.2003.6.3.209
- Selvam, R. P. and Millet, P. C. (2005), "Large eddy simulation of the tornado-structure interaction to determine structural loads", Wind Struct., 8, 49-60. https://doi.org/10.12989/was.2005.8.1.049
- Serre, E. and Bantoux P. (2002), "Vortex breakdown in a three-dimensional swirling flow", J. Fluid Mech., 459, 347-370.
- Snow J. T. (1982), "A review of recent advances in tornado vortex dynamics", Rev. Geophys. Space Phys., 20, 953-964. https://doi.org/10.1029/RG020i004p00953
- Smith, D. R. (1987), "Effect of boundary conditions on numerically simulated tornado-like vortices", J. Atmos. Sci., 44, 648-656. https://doi.org/10.1175/1520-0469(1987)044<0648:EOBCON>2.0.CO;2
- Twisdale L. A. and Vickery P. J. (1992), "Research on thunderstorm wind design parameters", J. Wind Eng. Ind. Aerodyn., 41-44, 545-556.
- Wan, C. and Chang, C. (1972), "Measurement of the velocity field in a simulated tornado-like vortex using a three-dimensional velocity probe", J. Atmos. Sci., 29, 116-127. https://doi.org/10.1175/1520-0469(1972)029<0116:MOTVFI>2.0.CO;2
- Wang, H., James, D., Letchford, C. W., Peterson, R. and Snow, J. (2001), "Development of a prototype tornado simulator for the assessment of fluid-structure interaction", First American Conference on Wind Engineering, 4-6 June, 2001, Clemson, SC.
- Ward, N. B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J. Atmos. Sci., 29, 1194-1204. https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2
- Wilson, T. and Rotunno, R. (1986), "Numerical simulation of a laminar end-wall vortex and boundary layer", Phys. Fluids, 29, 3993-4005. https://doi.org/10.1063/1.865740
- Wurman, J. (1998), "Preliminary results from the ROTATE-98 tornado study", Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, 14-18 September, 120-123.
- Wurman, J. and Gill, S. (2000), "Finescale radar observations of the Dimmitt, Texas (2 June 1995), Tornado", Mon. Weather Rev., 128, 2135-2164. https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2
- Wurman, J. (2002), "The multiple-vortex structure of a tornado", Weather Forecast., 17, 473-500. https://doi.org/10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2
- Xia, J., Lewellen, W. S. and Lewellen, D. C. (2003), "Influence of Mach number on tornado corner flow dynamics", J. Atmos. Sci., 60, 2820-2825. https://doi.org/10.1175/1520-0469(2003)060<2820:IOMNOT>2.0.CO;2
Cited by
- Effective technique to analyze transmission line conductors under high intensity winds vol.18, pp.3, 2014, https://doi.org/10.12989/was.2014.18.3.235
- F2 tornado velocity profiles critical for transmission line structures vol.106, 2016, https://doi.org/10.1016/j.engstruct.2015.10.020
- Study of the effects of translation and roughness on tornado-like vortices by large-eddy simulations vol.151, 2016, https://doi.org/10.1016/j.jweia.2016.01.006
- Doppler radar-derived wind field of five tornado events with application to engineering simulations vol.148, 2017, https://doi.org/10.1016/j.engstruct.2017.06.068
- Finite element modelling of self-supported transmission lines under tornado loading vol.18, pp.5, 2014, https://doi.org/10.12989/was.2014.18.5.473
- Behaviour of transmission line conductors under tornado wind vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.369
- Behaviour of guyed transmission line structures under tornado wind loading vol.89, pp.11-12, 2011, https://doi.org/10.1016/j.compstruc.2011.01.015
- Finite element modelling of pre-stressed concrete poles under downbursts and tornadoes vol.153, 2017, https://doi.org/10.1016/j.engstruct.2017.10.047
- Finite element analysis of interaction of tornados with a low-rise timber building vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2011.01.004
- Characteristics of internal pressures and net local roof wind forces on a building exposed to a tornado-like vortex vol.112, 2013, https://doi.org/10.1016/j.jweia.2012.11.005
- Numerical study of turbulent flow fields and the similarity of tornado vortices using large-eddy simulations vol.145, 2015, https://doi.org/10.1016/j.jweia.2015.05.008
- Large eddy simulations of translation and surface roughness effects on tornado-like vortices vol.104-106, 2012, https://doi.org/10.1016/j.jweia.2012.05.004
- Tornado hazard for structural engineering 2016, https://doi.org/10.1007/s11069-016-2392-z
- Current and Future Directions for Wind Research at Western: A New Quantum Leap in Wind Research through the Wind Engineering, Energy and Environment (WindEEE) Dome vol.35, pp.4, 2010, https://doi.org/10.5359/jawe.35.277
- Failure analysis of guyed transmission lines during F2 tornado event vol.85, 2015, https://doi.org/10.1016/j.engstruct.2014.11.045
- A study of tornado induced mean aerodynamic forces on a gable-roofed building by the large eddy simulations vol.146, 2015, https://doi.org/10.1016/j.jweia.2015.08.002
- Dependence of surface pressures on a cubic building in tornado like flow on building location and ground roughness vol.103, 2012, https://doi.org/10.1016/j.jweia.2012.02.011
- Effect of net structures on wall-free non-stationary air heat vortices vol.64, 2013, https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.008
- Characterization of tornado-like flow fields in a new model scale wind testing chamber vol.151, 2016, https://doi.org/10.1016/j.jweia.2016.02.002
- Reproducing tornadoes in laboratory using proper scaling vol.135, 2014, https://doi.org/10.1016/j.jweia.2014.10.008
- Modelling wind fields and debris flight in tornadoes vol.168, 2017, https://doi.org/10.1016/j.jweia.2017.06.017
- Rankine combined vortex interaction with a rectangular prism vol.29, pp.1, 2015, https://doi.org/10.1080/10618562.2015.1010524
- Experimental investigation of tornado-like vortex dynamics with swirl ratio: The mean and turbulent flow fields vol.98, pp.12, 2010, https://doi.org/10.1016/j.jweia.2010.10.001
- Effect of low-rise building geometry on tornado-induced loads vol.133, 2014, https://doi.org/10.1016/j.jweia.2014.02.001
- Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility vol.13, pp.1, 2008, https://doi.org/10.12989/was.2010.13.1.021
- Finite element modelling of transmission line structures under tornado wind loading vol.13, pp.5, 2008, https://doi.org/10.12989/was.2010.13.5.451
- Topographic effects on tornado-like vortex vol.27, pp.2, 2018, https://doi.org/10.12989/was.2018.27.2.123
- Risk-Based Reliability and Cost Analysis of Utility Poles Subjected to Tornado Hazard vol.32, pp.4, 2008, https://doi.org/10.1061/(asce)as.1943-5525.0001029
- Reliability-Based Assessment and Cost Analysis of Power Distribution Systems at Risk of Tornado Hazard vol.6, pp.2, 2008, https://doi.org/10.1061/ajrua6.0001055
- POD-based analysis of time-resolved tornado-like vortices vol.33, pp.1, 2008, https://doi.org/10.12989/was.2021.33.1.013
- Wind Flow Characteristics of Multivortex Tornadoes vol.22, pp.3, 2008, https://doi.org/10.1061/(asce)nh.1527-6996.0000462
- Characteristics of tornado wind loads and examinations of tornado wind load provisions in ASCE 7–16 vol.241, pp.None, 2008, https://doi.org/10.1016/j.engstruct.2021.112451
- Numerical study of tornado-borne debris on a low-rise building through large eddy simulation vol.106, pp.None, 2008, https://doi.org/10.1016/j.jfluidstructs.2021.103379
- Numerical study on applicability of various swirl ratio definitions to characterization of tornado-like vortex flow field vol.220, pp.None, 2008, https://doi.org/10.1016/j.jweia.2021.104841