References
- Belcher, S. E., Jerram, N. and Hunt, J. C. R. (2003), "Adjustment of a turbulent boundary layer to a canopy of roughness elements", J. Fluid Mech., 488, 369-398. https://doi.org/10.1017/S0022112003005019
- Cheng, H. and Castro, I. (2002), "Near wall flow over urban-like roughness", Boundary-Layer Meteorol., 104, 229-259 https://doi.org/10.1023/A:1016060103448
-
Cheng, Y., Lien, F. S., Yee, E. and Sinclair, R. (2003), "A comparison of large eddy simulations with a standard
$k-\varepsilon$ Reynolds-averaged Navier-Stokes Model for the prediction of a fully developed turbulent flow over a matrix of cubes", J. Wind Eng. Ind. Aerodyn., 91, 1301-1328. - Chu, A. K. M., Kwok, R. C. W. and Yu, K. N. (2005), "Study of pollution dispersion in urban areas using computational fluid dynamics (CFD) and geographic information system (GIS)", Envir. Mod. And Sofew. 20, 273-277. https://doi.org/10.1016/S1364-8152(04)00127-6
- Coceal. O. and Belcher, S. E. (2004), "A canopy model of mean winds through urban areas", Q. J. R. Meteorol. Soc., 130, 1349-1372. https://doi.org/10.1256/qj.03.40
- Coceal. O. and Belcher, S. E. (2005), "Mean winds through an inhomogeneous urban canopy", Boundary-Layer Meteorol. 115, 47-68. https://doi.org/10.1007/s10546-004-1591-4
- Coceal. O., Thomas, Y. G., Castro, I. P. and Belcher, S. E. (2006), "Mean flow and turbulence statistics over groups of urban-like cubical obstacles", Boundary-layer Meteorol. 121, 491-519. https://doi.org/10.1007/s10546-006-9076-2
- Cionco, R. M. (1972), "A wind-profile index for canopy flow", Boundary-Layer Meteorol. 3, 255-263. https://doi.org/10.1007/BF02033923
- Davidson, M. J., Snyder, W. H., Lawson, R. E. and Hunt, J. C. R. (1996), "Wind tunnel simulations of plume dispersion through groups of obstacles", Atmos. Environ., 22, 3715-3731.
- Deardorff, J. W. (1980), "Stratocumulus-topped mixed layers derived from a three-dimensional model", Boundary-Layer Meteorol., 18, 495-527. https://doi.org/10.1007/BF00119502
- Duijm, N. J. (1999), "Estimates of roughness parameters for arrays of obstacles", Boundary-Layer Meteorol., 91, 1-22. https://doi.org/10.1023/A:1001794831176
- Ehrhard, J. and Moussiopoulos, N. (2000), "On a new nonlinear turbulence model for simulating flows around building-shaped structures", J. Wind Eng. Ind. Aerodyn., 88, 91-99. https://doi.org/10.1016/S0167-6105(00)00026-X
- Golaz, J. C., Wang, S. Doyle, J. D. and Schimdt, J. (2005), "Coamps-LES: model evaluation and analysis of second-and third-moment vertical velocity budgets", Bound-Layer Meteorol., 116, 487-517. https://doi.org/10.1007/s10546-004-7300-5
- Grimmond, C. S. B. and Oke, T. R. (1999), "Aerodynamics properties of urban areas derived from analysis of surface form", J. Appl. Meteorol., 38, 1262-1292. https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
- Hanna, S. R., Tehranian, S., Carissimo, B., Macdonald, R. W. and Lohner, R. (2002), "Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays", Atmos. Environ., 36, 5067-5079. https://doi.org/10.1016/S1352-2310(02)00566-6
- Hunter, L. J., Johnson, G. T. and Watson, I. D. (1992), "An investigation of three-dimensional characteristics of flow regimes within the urban canyon", Atmos. Environ., 20, 425-432.
- Iyengar, A. K. S. and Farell, C. (2001), "Experimental issues in atmospheric boundary layer simulations: Roughness length and integral length scale determination", J. Wind Eng. Ind. Aerodyn., 89, 1059-1080. https://doi.org/10.1016/S0167-6105(01)00099-X
- Kanda, M., Moriwaki, R. and Kasamatsu, F. (2004), "Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays", Boundary-Layer Meteorol., 112, 343-368. https://doi.org/10.1023/B:BOUN.0000027909.40439.7c
- Lien, F. S. and Yee, E. (2004), "Numerical modelling of the turbulent flow developing within and over a 3-D building array, Part I: A high-resolution reynolds-averaged navier-stokes approach", Boundary-Layer Meorol., 112, 427-466. https://doi.org/10.1023/B:BOUN.0000030654.15263.35
- Lien, F. S., Yee, E. and Cheng, Y. (2004), "Simulation of mean flow and turbulence over a 2D building array using high-resolution CFD and a Distributed Drag Force Approach", J. Wind Eng. Ind. Aerodyn. 92, 117-158. https://doi.org/10.1016/j.jweia.2003.10.005
- Lien, F. S. and Yee, E. (2005), "Numerical modelling of the turbulent flow developing within and over a 3-D building array, Part III: A distributed drag force approach, its implementation and application", Boundary-Layer Meteorol., 114, 287-313. https://doi.org/10.1007/s10546-004-1987-1
- Macdonald, R. W., Griffiths, R. F. and Hall, D. J. (1998), "An improved method for the estimation of surface roughness of obstacle arrays", Atmos. Environ., 32, 1857-1864. https://doi.org/10.1016/S1352-2310(97)00403-2
- Macdonald, R. W., Griffiths, R. F. and Hall, D. J. (1998), "A comparison of results form scaled field and wind tunnel modelling of dispersion in arrays of obstacles", Atmos. Environ., 32, 3845-3862. https://doi.org/10.1016/S1352-2310(98)80006-X
- Macdonald, R. W. (2000), "Modelling the mean velocity profile in the urban canopy layer", Boundary-Layer Meteorol. 97, 25-45. https://doi.org/10.1023/A:1002785830512
- Macdonald, R. W., Schofield, S. C. and Slawson, P. R. (2002), "Physical modeling of urban roughness using arrays of regular roughness elements", Water, Air, and Soil Pollution: Focus., 2, 541-554. https://doi.org/10.1023/A:1021392914279
- Mavroidis, I. and Griffiths, R. F. (2001), "Local characteristics of atmospheric disperion within building arrays", Atmos. Environ., 35, 2941-2954. https://doi.org/10.1016/S1352-2310(00)00456-8
- Oke, T. R. (1988), "Street design and urban canopy layer climate", Energ. Buildings, 11, 103-113. https://doi.org/10.1016/0378-7788(88)90026-6
- Raupach, M. R., Coppin, P. A. and Legg, B. J. (1986), "Experiments on scalar dispersion within a model plant canopy, Part 1: The turbulence structure", Boundary-Layer Meteorol., 35, 21-52. https://doi.org/10.1007/BF00117300
- Sada, K. and Sato, A. (2002), "Numerical calculation of flow and stack-gas concentration fluctuation around a cubical building", Atmos. Environ., 36, 5527-5534. https://doi.org/10.1016/S1352-2310(02)00668-4
- Snyder, W. H. and Castro, I. P. (2002), "The critical Reynolds number for rough-wall boundary layers", J. Wind Eng. Ind. Aerodyn., 90, 41-54. https://doi.org/10.1016/S0167-6105(01)00114-3
- Uehara, K., Wakamatsu, S. and Ooka, R. (2003), "Studies on critical reynolds number indices for wind-tunnel experiments on flow within urban areas", Boundary-Layer Meteorol., 107, 353-370. https://doi.org/10.1023/A:1022162807729
- Yee, E. and Biltoft, C. A. (2004), "Concentration fluctuation measurements in a plume dispersing through a regular array of obstacles", Boundary-Layer Meteorol., 111, 363-415. https://doi.org/10.1023/B:BOUN.0000016496.83909.ee
- Zhang, N. and Jiang, W. M. (2004), "Numerical method study of how buildings affect the flow characteristics of an urban canopy", Wind Struct., 7, 159-173. https://doi.org/10.12989/was.2004.7.3.159
- Zhang, N. and Jiang, W. M. (2006), "A large eddy simulation on the effect of buildings on urban flows", Wind Struct., 9(1), 23-25. https://doi.org/10.12989/was.2006.9.1.023
Cited by
- Turbulence and Air Exchange in a Two-Dimensional Urban Street Canyon Between Gable Roof Buildings 2017, https://doi.org/10.1007/s10546-017-0324-4
- A New Aerodynamic Parametrization for Real Urban Surfaces vol.148, pp.2, 2013, https://doi.org/10.1007/s10546-013-9818-x
- Aerodynamic Properties of Rough Surfaces with High Aspect-Ratio Roughness Elements: Effect of Aspect Ratio and Arrangements vol.163, pp.2, 2017, https://doi.org/10.1007/s10546-016-0222-1
- Impact of Eddy Characteristics on Turbulent Heat and Momentum Fluxes in the Urban Roughness Sublayer vol.164, pp.1, 2017, https://doi.org/10.1007/s10546-017-0244-3
- Estimation of aerodynamic roughness of a harvested Douglas-fir forest using airborne LiDAR vol.136, 2013, https://doi.org/10.1016/j.rse.2013.05.007
- A method for mapping the turbulence intensity and excess energy available to building mounted wind turbines over a UK City vol.19, pp.8, 2016, https://doi.org/10.1002/we.1928
- Evaluation of Urban Local-Scale Aerodynamic Parameters: Implications for the Vertical Profile of Wind Speed and for Source Areas vol.164, pp.2, 2017, https://doi.org/10.1007/s10546-017-0248-z
- Building neighborhood emerging properties and their impacts on multi-scale modeling of building energy and airflows vol.91, 2015, https://doi.org/10.1016/j.buildenv.2015.02.031
- On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity vol.161, pp.1, 2016, https://doi.org/10.1007/s10546-016-0154-9
- Large-eddy simulations of ventilation for thermal comfort — A parametric study of generic urban configurations with perpendicular approaching winds vol.20, 2017, https://doi.org/10.1016/j.uclim.2017.04.007
- Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density vol.79, 2014, https://doi.org/10.1016/j.buildenv.2014.05.008
- Aerodynamic Parameters of Urban Building Arrays with Random Geometries vol.138, pp.1, 2011, https://doi.org/10.1007/s10546-010-9551-7
- Analysis of airflow over building arrays for assessment of urban wind environment vol.59, 2013, https://doi.org/10.1016/j.buildenv.2012.08.007
- The Effects of Residential Area Building Layout on Outdoor Wind Environment at the Pedestrian Level in Severe Cold Regions of China vol.9, pp.12, 2017, https://doi.org/10.3390/su9122310
- The predictability of above roof wind resource in the urban roughness sublayer vol.15, pp.2, 2012, https://doi.org/10.1002/we.463
- Mapping the wind resource over UK cities vol.55, 2013, https://doi.org/10.1016/j.renene.2012.12.039
- The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas vol.56, 2012, https://doi.org/10.1016/j.buildenv.2012.03.023
- Equations for the Drag Force and Aerodynamic Roughness Length of Urban Areas with Random Building Heights vol.145, pp.3, 2012, https://doi.org/10.1007/s10546-012-9747-0
- Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements vol.789, 2016, https://doi.org/10.1017/jfm.2015.687
- Aerodynamic Parameters of Regular Arrays of Rectangular Blocks with Various Geometries vol.132, pp.2, 2009, https://doi.org/10.1007/s10546-009-9403-5
- Estimating Aerodynamic Parameters of Urban-Like Surfaces with Heterogeneous Building Heights vol.141, pp.3, 2011, https://doi.org/10.1007/s10546-011-9640-2
- Aerodynamic Parameters of a UK City Derived from Morphological Data vol.146, pp.3, 2013, https://doi.org/10.1007/s10546-012-9761-2
- Determination of aerodynamic parameters of urban surfaces: methods and results revisited vol.122, pp.3-4, 2015, https://doi.org/10.1007/s00704-014-1323-8
- Large eddy simulations and parameterisation of roughness element orientation and flow direction effects in rough wall boundary layers vol.17, pp.11, 2016, https://doi.org/10.1080/14685248.2016.1215604
- Flow Kinematics in Variable-Height Rotating Cylinder Arrays vol.138, pp.11, 2016, https://doi.org/10.1115/1.4033676
- Aerodynamic roughness variation with vegetation: analysis in a suburban neighbourhood and a city park pp.1573-1642, 2018, https://doi.org/10.1007/s11252-017-0710-1
- Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility vol.13, pp.1, 2008, https://doi.org/10.12989/was.2010.13.1.021
- Large eddy simulation of wind effects on a super-tall building vol.13, pp.6, 2008, https://doi.org/10.12989/was.2010.13.6.557
- Drag forces on sparsely packed cube arrays vol.880, pp.None, 2019, https://doi.org/10.1017/jfm.2019.726
- PIV-based pressure estimation in the canopy of urban-like roughness vol.61, pp.3, 2008, https://doi.org/10.1007/s00348-020-2904-1
- Urban built context as a passive cooling strategy for buildings in hot climate vol.231, pp.None, 2021, https://doi.org/10.1016/j.enbuild.2020.110606
- Spatial characteristics of turbulent organized structures within the roughness sublayer over idealized urban surface with obstacle-height variability vol.21, pp.1, 2021, https://doi.org/10.1007/s10652-020-09764-4
- Flow over closely packed cubical roughness vol.920, pp.None, 2008, https://doi.org/10.1017/jfm.2021.456
- Urban Boundary Layers Over Dense and Tall Canopies vol.181, pp.1, 2008, https://doi.org/10.1007/s10546-021-00635-z
- Nonlinear relationship between urban form and street-level PM2.5 and CO based on mobile measurements and gradient boosting decision tree models vol.205, pp.None, 2021, https://doi.org/10.1016/j.buildenv.2021.108265
- Synoptic wind driven ventilation and far field radionuclides dispersion across urban block regions: Effects of street aspect ratios and building array skylines vol.78, pp.None, 2008, https://doi.org/10.1016/j.scs.2021.103606