DOI QR코드

DOI QR Code

Wind velocity simulation of spatial three-dimensional fields based on autoregressive model

  • Gao, Wei-Cheng (Department of Astronautic Science and Mechanics, Harbin Institute of Technology) ;
  • Yu, Yan-Lei (Department of Astronautic Science and Mechanics, Harbin Institute of Technology)
  • Received : 2007.11.05
  • Accepted : 2008.05.22
  • Published : 2008.06.25

Abstract

This paper adopts autoregressive (AR) model to simulate the wind velocity of spatial three-dimensional fields in accordance with the time and space dependent characteristics of the 3-D fields. Based on the built MATLAB programming, this paper discusses in detail the issues of the AR model deduced by matrix form in the simulation and proposes the corresponding solving methods: the over-relaxation iteration to solve the large sparse matrix equations produced by large number of degrees of freedom of structures; the improved Gauss formula to calculate the numerical integral equations which integral functions contain oscillating functions; the mixed congruence and central limit theorem of Lindberg-Levy to generate random numbers. This paper also develops a method of ascertaining the rank of the AR model. The numerical examples show that all those methods are stable and reliable, which can be used to simulate the wind velocity of all large span structures in civil engineering.

Keywords

References

  1. Samaras, E., Shinozuka, M. and Tsurui, A. (1985), "ARMA representation of random vector processes", J. Eng. Mech., ASCE, 111(3), 449-461. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:3(449)
  2. Li, Y. and Kareem, A. (1990), "ARMA representation of wind field", J. Wind Eng. Ind. Aerodyn., 36, 415-427. https://doi.org/10.1016/0167-6105(90)90325-7
  3. Kamal, L, and Jafri, Y. Z. (1997), "Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan", Solar Energy, 61(1), 23-32. https://doi.org/10.1016/S0038-092X(97)00037-6
  4. Kho, S., Baker, C. and Hoxey, R. (2002), "POD/ARMA reconstruction of the surface pressure field around a low rise structure", J. Wind Eng. Ind. Aerodyn., 90, 1831-1842. https://doi.org/10.1016/S0167-6105(02)00291-X
  5. Kizilkaya, A. and Kayran,A. H. (2006), "ARMA model parameter estimation based on the equivalent MA approach", Digit. Signal Process., 16, 670-681. https://doi.org/10.1016/j.dsp.2006.08.010
  6. Iwatani, Y. (1982), "Simulation of multidimensional wind fluctuations having any arbitrary power spectra and cross spectra", J. Wind Eng., 11, 5-14. (in Japanese)
  7. Iannuzzi, A. and Spinelli, P. (1987), "Artificial wind generation and structural response", ASCE, J. Struct. Eng., 113(10), 2382- 2398. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:12(2382)
  8. Huang, Z. and Chalabi, Z. S. (1995), "Use of time-series analysis to model and forecast wind speed", J. Wind Eng. Ind. Aerodyn., 56, 311-322. https://doi.org/10.1016/0167-6105(94)00093-S
  9. Stathopoulos, T., Kumar, K. S. and Mohammadian, A. R. (1996), "Design wind pressure coefficients for monoslope roofs: A time series approach", J. Wind Eng. Ind. Aerodyn., 65, 143-153. https://doi.org/10.1016/S0167-6105(97)00031-7
  10. Facchini, L. (1996), "The numerical simulation of Gaussian cross-correlated wind velocity fluctuations by means of a hybrid model", J. Wind Eng. Ind. Aerodyn., 64, 187-202. https://doi.org/10.1016/S0167-6105(97)00004-4
  11. Li, Y-Q. and Dong, S-L. (2001), "Random wind load simulation and computer program for large-span spatial structures", Spatial Structure, 7(3), 3-11.(in chinese)
  12. Poggi, P., Muselli, M., Notton, G., Cristofari, C. and Louche, A. (2003), "Forecasting and simulating wind speed in Corsica by using an autoregressive model", Energ Convers. Manage., 44, 3177-3196. https://doi.org/10.1016/S0196-8904(03)00108-0
  13. Roy, A. and Fuller, W. A. (2001), "Estimation for autoregressive time series with a root near one", J. Bus Econ Stat., 19, 482-493. https://doi.org/10.1198/07350010152596736
  14. Kim, J. H. (2003), "Forecasting autoregressive time series with bias-corrected parameter estimators", International J. Forecasting, 19, 493-502. https://doi.org/10.1016/S0169-2070(02)00062-6
  15. Strube, H. W. (1985), "A generalization of correlation functions and the Wiener-Khinchin theorem", Signal Process, 8(1), 63-74. https://doi.org/10.1016/0165-1684(85)90089-1
  16. Panofsky, H. A. (1974), "The atmospheric boundary layer below150 meters", Ann Rev. Fluid Mech., 6, 147-177. https://doi.org/10.1146/annurev.fl.06.010174.001051
  17. Schlindwein, F. S. and Evans, D. H. (1990), "Selection of the order of autoregressive models for spectral analysis of Doppler ultrasound signals", Ultrasound Med. Biol. 16(1), 81-91. https://doi.org/10.1016/0301-5629(90)90089-U
  18. Akaike, H. (1974), "A new look at the statistical model identification", IEEE Trans. Automatic Control, 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705
  19. Pappas, S. S., Leros, A. K. and Katsikas S. K. (2006), "Joint order and parameter estimation of multivariate autoregressive models using multi-model partitioning theory", Digit Signal Process, 16, 782-795. https://doi.org/10.1016/j.dsp.2006.06.006
  20. Martins, M. M., Trigo, M. E. and Santos. M. M. (1996), "An error bound for the SSOR and USSOR methods", Linear Algebra. Appl., 232, 131-147. https://doi.org/10.1016/0024-3795(94)00036-0
  21. Gander, W. and Gautschi, W. (2000), "Adaptive quadrature revisited", Numer Math., 40, 84-101. https://doi.org/10.1023/A:1022318402393
  22. Gaenssler, P. and Joos, K. (1992), "Another view on martingale central limit theorems", Stoch. Proc. Appl., 40(2), 181-197. https://doi.org/10.1016/0304-4149(92)90011-E
  23. Wang, Z-H. (1994), "Simulation of wind loading", J. Build. Struct., 15(1), 44-52. (in chinese)