References
- Alexander, R.C. and Wurman, J.M. (2005), "The 30 May 1998 Spencer, South Dakota, storm. Part I: the structural evolution and environment of the tornadoes", Mon. Weather Rev., AMS, 133, 72-96. https://doi.org/10.1175/MWR-2855.1
- Bluestein, B.H. and Pazmany, L.A. (2000), "Observations of tornadoes and other convective phenomena with a mobile 3-mm wavelength Doppler radar: The spring 1999 field experiment", Bull. American Meteorological Society, 81, 2939-2951. https://doi.org/10.1175/1520-0477(2000)081<2939:OOTAOC>2.3.CO;2
- Church, C.R., Snow, J.T., Baker, G.L. and Agee, E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation", J. Atmos. Sci., 36, 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2
- Davies-Jones, P.R. (1973), "The dependence of core radius on swirl ratio in a tornado simulator", J. Atmos. Sci., 30, 1427-1430. https://doi.org/10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2
- Dessens, J. (1972), "Influence of ground roughness on tornadoes: A laboratory simulation", J. Appl. Meteorol., 11, 72-75. https://doi.org/10.1175/1520-0450(1972)011<0072:IOGROT>2.0.CO;2
- Diamond, C.J. and Wilkins, M.E. (1984), "Translation effects on simulated tornadoes", J. Atmos. Sci., 41(17), 2574-2580. https://doi.org/10.1175/1520-0469(1984)041<2574:TEOST>2.0.CO;2
- Doswell, C.A. and Grazulis, P.T. (1998), "A demonstration of vortex configurations in an inexpensive tornado simulator", Preprints, 19th Conf. Severe Local Storms, Minneapolis, MN, American Meteorological Society, 85-88.
- Dowell, D.C., Alexander, C.R., Wurman, J.M. and Wicker, J.L. (2005), "Centrifuging of hydrometeor and debris in tornadoes: radar-reflectivity patterns and wind-measurement errors", Mon. Weather Rev., AMS, 133, 1501-1524. https://doi.org/10.1175/MWR2934.1
- Fluent, Inc. (2005), FLUENT 6.2 User's Guide, Lebanon, NH.
- Gallus, Jr., W.A., Sarkar, P.P., Haan, Jr., F.L., Le, K., Kardell, R. and Wurman, J. (2004), "A translating tornado simulator for engineering tests: Comparison of radar, numerical model, and simulator winds", Preprints, 22nd Conf. Severe Local Storms, Hyannis, MA, American Meteorological Society.
- Gallus, Jr., W.A., Haan, Jr., F.L., Sarkar, P.P., Le, K. and Wurman, J. (2006), "Comparison of numerical model and laboratory simulator tornado wind fields with radar observations of the Spencer, South Dakota tornado", Symp. on the Challenges of Severe Convective Storms, 86th AMS Annual Meeting, Atlanta, GA, American Meteorological Society.
- Haan, F.L., Sarkar, P.P. and Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30, 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010
- Hu, M., Xue, M., Brewster, K. and Gao, J. (2004), "Prediction of Fort Worth tornadic thunderstorms using 3DVAR and cloud analysis with WSR-88D Level-II data", Preprints, 22nd Conf. Severe Local Storms, Hyannis, MA, American Meteorological Society, CDROM, J1.2.
- Jischke, M.C. and Light B.D. (1983), "Laboratory simulation of tornadic wind loads on a rectangular model structure", Proceedings of the Sixth International Conf. on Wind Engineering, Australia and New Zealand.
- Kondo, J. and Yamazawa, H. (1986), "Aerodynamic aerodynamic roughness over an inhomogeneous ground surface", Bound-Lay. Meteorol., 35, 331-348. https://doi.org/10.1007/BF00118563
- Lettau, H. (1969), "Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description", J. Appl. Meteorology, 8, 828-832. https://doi.org/10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2
- Leslie, W.F. (1977), "Surface roughness effects on suction vortex formation", J. Atmos. Sci., 34, 1022-1027. https://doi.org/10.1175/1520-0469(1977)034<1022:SREOSV>2.0.CO;2
- Lewellen, D.C. and Lewellen, W.S. (1997), "Large eddy simulations of a tornado's interaction with the surface", J. Atmos. Sci., 54(5), 581-605. https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2
- Lewellen, W.S., Lewellen, D.C., Xia, J. (1999), "The influence of a local swirl ratio on tornado intensification near the surface", J. Atmos. Sci., 57, 527-544.
- Lewellen, D.C. and Lewellen, W.S. (2007a), "Near-surface intensification of tornado vortices", J. Atmos. Sci., 64(7), 2176-2194. https://doi.org/10.1175/JAS3965.1
- Lewellen, D.C. and Lewellen, W.S. (2007b), "Near-surface vortex intensification through corner flow collapse", J. Atmos. Sci., 64(7), 2195-2209. https://doi.org/10.1175/JAS3966.1
- Stull, R.B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers.
- Snow, J.T. and Lund, D.E. (1988), "A second generation tornado vortex chamber at Purdue University", Preprints, 13th Conf. Severe Local Storms, Tulsa, Oklahoma, American Meteorological Society, 323-326.
- Simiu, E. and Scanlan, R. H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, 3rd edition. John Wiley and Sons, New York.
- Selvam, R.P. and Millett, P.C. (2003), "Computer modeling of the tornado-structure interaction: investigation of structural loading on cubic building", Wind Struct., 6(3), 209-220. https://doi.org/10.12989/was.2003.6.3.209
- Sarkar, P.P., Haan, F.L., Gallus, W.A., Kuai, L., Kardell, R., Wurman, J.M. (2005), "A laboratory tornado simulator: comparison of laboratory, numerical and full-scale measurements", 10th Americas Conference on Wind Engineering, Baton Rouge, US, American Association for Wind Engineering.
- Ward, N.B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J. Atmos. Sci., 29, 1194-1204. https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2
- Wilhelmson, R.B. and Wicker, L.J. (2001), "Numerical modeling of severe local storms", Severe Convective Storms, Meteor. Monogr., American Meteorological Society, 28(50), 123-166. https://doi.org/10.1175/0065-9401-28.50.123
- Wilkins, M.E., Sasaki, Y., Johnson, H.L. (1975), "Surface friction effects on thermal convection in a rotating fluid: A laboratory simulation", Mon. Weather Rev., AMS, 103, 305-317. https://doi.org/10.1175/1520-0493(1975)103<0305:SFEOTC>2.0.CO;2
- Wurman, J. and Gill, S. (2000), "Finescale radar observations of the Dimmitt, Texas (2 June 1995) tornado", Mon. Weather Rev., AMS, 128, 2135-2164. https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2
- Wurman, J.M. (2002), "The multiple vortex structure of a tornado", Weather Forecas., 17, 473-505. https://doi.org/10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2
- Wurman, J.M. and Alexander, C.R. (2005), "The 30 May 1998 Spencer, South Dakota, storm. Part II: comparison of observed damage and radar-derived winds in the tornadoes", Mon. Weather Rev., AMS, 133, 97-119. https://doi.org/10.1175/MWR-2856.1
Cited by
- Analysis of load characteristics and responses of low-rise building under tornado vol.210, 2017, https://doi.org/10.1016/j.proeng.2017.11.062
- About choice of particle parameters for visualization and diagnostics of free concentrated air vortices vol.52, pp.4, 2014, https://doi.org/10.1134/S0018151X14040257
- Simulation of flying debris using a numerically generated tornado-like vortex vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2011.01.016
- Method of impact on free nonstationary air vortices vol.50, pp.4, 2012, https://doi.org/10.1134/S0018151X12040219
- Numerical study on dynamics of a tornado-like vortex with touching down by using the LES turbulence model vol.19, pp.1, 2014, https://doi.org/10.12989/was.2014.19.1.089
- Effect of net structures on wall-free non-stationary air heat vortices vol.64, 2013, https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.008
- Comparison between vortex flow and bottom-supply flow on contaminant removal in a ventilated cavity vol.118, 2018, https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.121
- Concentrated air and fire vortices: Physical modeling (a Review) vol.54, pp.3, 2016, https://doi.org/10.1134/S0018151X16030226
- Residential Damage Patterns Following the 2011 Tuscaloosa, AL and Joplin, MO Tornadoes vol.8, pp.6, 2013, https://doi.org/10.20965/jdr.2013.p1061
- Numerical study on flow fields of tornado-like vortices using the LES turbulence model vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2011.01.014
- Study of the effects of translation and roughness on tornado-like vortices by large-eddy simulations vol.151, 2016, https://doi.org/10.1016/j.jweia.2016.01.006
- Study of the vortex principle for improving the efficiency of an exhaust ventilation system vol.142, 2017, https://doi.org/10.1016/j.enbuild.2017.03.007
- Analysis of Tornado-Induced Tree Fall Using Aerial Photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, Tornadoes of 2011* vol.52, pp.5, 2013, https://doi.org/10.1175/JAMC-D-12-0206.1
- An Eddy Injection Method for Large-Eddy Simulations of Tornado-Like Vortices vol.145, pp.5, 2017, https://doi.org/10.1175/MWR-D-16-0339.1
- Experimental study of wall-free non-stationary vortices generation due to air unstable stratification vol.55, pp.23-24, 2012, https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.063
- Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices vol.162, pp.2, 2017, https://doi.org/10.1007/s10546-016-0201-6
- Rankine combined vortex interaction with a rectangular prism vol.29, pp.1, 2015, https://doi.org/10.1080/10618562.2015.1010524
- Numerical study of the effects of surface roughness on water disinfection UV reactor vol.148, 2016, https://doi.org/10.1016/j.chemosphere.2016.01.005
- Reproducing tornadoes in laboratory using proper scaling vol.135, 2014, https://doi.org/10.1016/j.jweia.2014.10.008
- Numerical study of turbulent flow fields and the similarity of tornado vortices using large-eddy simulations vol.145, 2015, https://doi.org/10.1016/j.jweia.2015.05.008
- Large eddy simulations of translation and surface roughness effects on tornado-like vortices vol.104-106, 2012, https://doi.org/10.1016/j.jweia.2012.05.004
- Tornado Vortex Structure, Intensity, and Surface Wind Gusts in Large-Eddy Simulations with Fully Developed Turbulence vol.74, pp.5, 2017, https://doi.org/10.1175/JAS-D-16-0258.1
- Air tornado-like vortices: Mathematical modeling (a review) vol.55, pp.2, 2017, https://doi.org/10.1134/S0018151X17020201
- Doppler radar-derived wind field of five tornado events with application to engineering simulations vol.148, 2017, https://doi.org/10.1016/j.engstruct.2017.06.068
- Numerical simulation of idealised three-dimensional downburst wind fields vol.32, pp.11, 2010, https://doi.org/10.1016/j.engstruct.2010.07.024
- Near-Ground Pressure and Wind Measurements in Tornadoes* vol.138, pp.7, 2008, https://doi.org/10.1175/2010mwr3201.1
- In Situ, Doppler Radar, and Video Observations of the Interior Structure of a Tornado and the Wind-Damage Relationship vol.94, pp.6, 2013, https://doi.org/10.1175/bams-d-12-00114.1
- Modeling air and fire non-stationary whirls in laboratory conditions vol.980, pp.None, 2008, https://doi.org/10.1088/1742-6596/980/1/012019
- Topographic effects on tornado-like vortex vol.27, pp.2, 2018, https://doi.org/10.12989/was.2018.27.2.123
- Influence of a community of buildings on tornadic wind fields vol.30, pp.2, 2008, https://doi.org/10.12989/was.2020.30.2.165
- POD-based analysis of time-resolved tornado-like vortices vol.33, pp.1, 2008, https://doi.org/10.12989/was.2021.33.1.013
- Evaluation of a novel curved vortex exhaust system for pollutant removal vol.200, pp.None, 2021, https://doi.org/10.1016/j.buildenv.2021.107931
- Wind Flow Characteristics of Multivortex Tornadoes vol.22, pp.3, 2008, https://doi.org/10.1061/(asce)nh.1527-6996.0000462
- Numerical study of tornado-borne debris on a low-rise building through large eddy simulation vol.106, pp.None, 2008, https://doi.org/10.1016/j.jfluidstructs.2021.103379
- Revealing Bluff-Body Aerodynamics on Low-Rise Buildings under Tornadic Winds Using Numerical Laboratory Tornado Simulator vol.148, pp.3, 2022, https://doi.org/10.1061/(asce)st.1943-541x.0003283