DOI QR코드

DOI QR Code

Nonlinear inelastic analysis of steel-concrete composite beam-columns using the stability functions

  • Park, Jung-Woong (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2008.08.26
  • Accepted : 2008.11.10
  • Published : 2008.12.20

Abstract

In this study, a flexibility-based finite element method considering geometric and material nonlinearities is developed for analyzing steel-concrete frame structures. The stability functions obtained from the exact buckling solution of the beam-column subjected to end moments are used to accurately capture the second-order effects. The proposed method uses the force interpolation functions, including a moment magnification due to the axial force and lateral displacement. Thus, only one element per a physical member can account for the interaction between the bending moment and the axial force in a rational way. The proposed method applies the Newton method based on the load control and uses the secant stiffness method, which is computationally both efficient and stable. According to the evaluation result of this study, the proposed method consistently well predicts the nonlinear inelastic behavior of steel-concrete composite frames and gives good efficiency.

Keywords

References

  1. ACI 318-05 (2005), Building code requirements for reinforced concrete (ACI 318-05) and Commentary (ACI 318R-05). American Concrete Institute
  2. AIJ (1997), Recommendations for design and construction of concrete filled steel tubular structures. Architectural Institute of Japan
  3. AISC (2005), Specification for structural steel buildings. American Institute of Steel Construction
  4. Alemdar, B.N. and White, D.W. (2005), 'Displacement, flexibility, and mixed beam-column finite element formulations for distributed plasticity analysis', J. Struct. Eng. ASCE, 131(12), 1811-1819 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1811)
  5. Ayoub, A. (2003), 'Mixed formulation of nonlinear beam on foundation elements', Comput. Struct., 81(7), 411-421 https://doi.org/10.1016/S0045-7949(03)00015-4
  6. Ayoub, A. and Filippou, F.C. (2000), 'Mixed formulation of nonlinear steel-concrete composite beam element', J Struct. Eng. ASCE, 126(3), 371-381 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(371)
  7. Chen, W.F. (2008), 'Structural engineering: Seeing the big picture', KSCE J. Civil Eng., 12(1), 25-29 https://doi.org/10.1007/s12205-008-8025-7
  8. Chen, W.F. and Lui, E.M. (1987), 'Structural stability: theory and implementation', Elsevier, New York
  9. Ciampi, V. and Carlesimo, L. (1986), 'A nonlinear beam element for seismic analysis of structures', Proc. 8th Euro. Conf. Earthq. Eng., Lisbon, Portugal, 73-80
  10. Eurocode 4, ENV 1994-1-1 (2004), 'Design of composite steel and concrete structures, Part 1.1, General rules and rules for building', Commission of European Communities
  11. Hjelmstad, K.D. (1997), 'Fundamentals for structural mechanics', Prentice Hall
  12. Hjelmstad, K.D. and Taciroglu, E. (2002), 'Mixed methods and flexibility approaches for nonlinear frame analysis', J. Constr. Steel Res., 58(5-8), 967-993 https://doi.org/10.1016/S0143-974X(01)00100-6
  13. Kim, S.E., Uang, C.M., Choi, S.H., and An, K.Y. (2006), 'Practical advanced analysis of steel frames considering lateral-torsional buckling', Thin Wall Struct., 44(7), 709-720 https://doi.org/10.1016/j.tws.2006.08.004
  14. Liu, D. (2004), 'Behaviour of high strength rectangular concrete-filled steel hollow section columns under eccentric loading', Thin Wall Struct., 42(12), 1631-1644 https://doi.org/10.1016/j.tws.2004.06.002
  15. Liu, D. (2005), 'Tests on high-strength rectangular concrete-filled steel hollow section stub columns', J. Constr. Steel Res., 61(7), 902-911 https://doi.org/10.1016/j.jcsr.2005.01.001
  16. Liu, D. (2006), 'Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns', J. Constr. Steel Res., 62(8), 839-846 https://doi.org/10.1016/j.jcsr.2005.11.020
  17. Liu, D., Gho, W.M., and Yuan, J. (2003), 'Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns', J. Constr. Steel Res., 59(12), 1499-1515 https://doi.org/10.1016/S0143-974X(03)00106-8
  18. Lue, D.M., Liu, J.L., and Yen, T. (2007), 'Experimental study on rectangular CFT columns with high-strength concrete', J. Constr. Steel Res., 63(1), 37-44 https://doi.org/10.1016/j.jcsr.2006.03.007
  19. Mander, J.B., Priestly, J.N., and Park, R. (1988), 'Theoretical stress-strain model for confined concrete', J. Struct. Eng. ASCE, 114(8), 1804-1826 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  20. OpenSees user command-language manual (2008), Pacific Earthquake Engineering Research Center, Univ. of California, Berkeley
  21. Popovics, S. (1973), 'A numerical approach to the complete stress-strain curves for concrete', Cement Concrete Res., 3(5), 583-599 https://doi.org/10.1016/0008-8846(73)90096-3
  22. Spacone, E., Ciampi, V., and Filippou, F.C. (1996), 'Mixed formulation of nonlinear beam finite element', Comput. Struct., 58(1), 71-83 https://doi.org/10.1016/0045-7949(95)00103-N
  23. Spacone, E., Filippou, F.C., and Taucer, F.F. (1996), 'Fibre beam column model for nonlinear analysis of R/C frames: Part I. formulation', Earthq. Eng. Struct. D, 25(7), 711-725 https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  24. Susantha, K.A.S., Ge, H., and Usami, T. (2001), 'Uniaxial-stress-strain relationship of concrete confined by various shaped steel tubes', Eng. Struct., 23(10), 1331-1347 https://doi.org/10.1016/S0141-0296(01)00020-7
  25. Taucer, F.F., Spacone, E., and Filippou, F.C. (1991), 'A fiber beam-column element for seismic response analysis of reinforced concrete structures', Report No. EERC 91-17, Earthquake Engineering Research Center, Univ. of California, Berkeley
  26. Tomii, M. and Sakino, K. (1979), 'Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns', T. Arch. Inst. JPN, 275, 55-63
  27. Tort, C. and Hajjar, J.F. (2004), 'Damage assessment of rectangular concrete-filled steel tubes for performancebased design', Earthq. Spectra, 20(4), 1317-1348 https://doi.org/10.1193/1.1809660

Cited by

  1. A reinforced concrete frame element with shear effect vol.36, pp.1, 2010, https://doi.org/10.12989/sem.2010.36.1.057
  2. A new 3-D element formulation on displacement of steel-concrete composite box beam vol.20, pp.5, 2013, https://doi.org/10.1007/s11771-013-1622-8
  3. Nonlinear static and cyclic analysis of concrete-filled steel columns vol.66, pp.6, 2010, https://doi.org/10.1016/j.jcsr.2009.12.011
  4. Experimental and Simulation Study of a Hybrid Frame Structure with Viscous Dampers vol.446-449, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.446-449.894
  5. Normalised rotation capacity for deformability evaluation of high-performance concrete beams vol.1, pp.3, 2008, https://doi.org/10.12989/eas.2010.1.3.269
  6. Concurrent flexural strength and deformability design of high-performance concrete beams vol.40, pp.4, 2008, https://doi.org/10.12989/sem.2011.40.4.541
  7. Simulation of the damping effect of a high-rise CRST frame structure vol.9, pp.4, 2012, https://doi.org/10.12989/cac.2012.9.4.245