DOI QR코드

DOI QR Code

Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity

  • Received : 2007.09.13
  • Accepted : 2008.10.07
  • Published : 2008.11.30

Abstract

Laplace-Fourier transform techniques are used to investigate the interaction caused by mechanical, thermal and microstress sources in a generalized thermomicrostretch elastic medium with temperature-dependent mechanical properties. The modulus of elasticity is taken as a linear function of reference temperature. The integral transforms are inverted using a numerical technique to obtain the normal stress, tangential stress, tangential couple stress, microstress and temperature distribution. Effect of temperature dependent modulus of elasticity and thermal relaxation times have been depicted graphically on the resulting quantities. Comparisons are made with the results predicted by the theories of generalized thermoelasticity. Some particular cases are also deduced from the present investigation.

Keywords

References

  1. Budaev, O.R., Ivanova, M.N., Damdinov, B.B. (2003), 'Temperature dependence of shear elasticity of some liquids', Adv. Colloid Interfac., 104, 307-310 https://doi.org/10.1016/S0001-8686(03)00050-2
  2. Bakshi, A., Roy, B.K. and Bera, R.K. (2007), 'Effect of generalized thermoelasticity materials with memory', Struct. Eng. Mech., 25(5) https://doi.org/10.12989/sem.2007.25.5.597
  3. Cicco, S. De (2003), 'Stress concentratation e.ects in microstretch elastic solids', Int. J. Eng. Sci., 41, 187-199 https://doi.org/10.1016/S0020-7225(02)00154-4
  4. Eringen A.C. (1984), 'Plane waves in non-local micropolar elastcity', Int. J. Eng. Sci., 22, 1113-1121 https://doi.org/10.1016/0020-7225(84)90112-5
  5. Eringen, A.C. (1999), 'Microcontinuum field theories I: Foundations and solids', Springer-Verlag, New York
  6. Ezzat, M.A., Othman, M.I. and El-Karamany, A.S. (2001), 'The dependence of modulus of elasticity of refernce temperature in generalized thermoelasticity', J. Therm. Stresses, 24, 1159-1176 https://doi.org/10.1080/014957301753251737
  7. Ezzat, M.A., El-Karamany, A.S. and Samaan, A.A. (2004), 'The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation', Appl. Math. Comput., 147, 169-189 https://doi.org/10.1016/S0096-3003(02)00660-4
  8. Kumar, R. and Choudhary S. (2004), 'Dynamical behaviour of orthotropic micropolar elastic medium', J. Vib. Control, 8, 1053-1069 https://doi.org/10.1177/107754602029582
  9. Kumar, R. and Deshwal, S. (2000), 'Disturbance due to a point source in a generalized thermomicrostretch elastic medium', Ganita, 51, 187-206
  10. Kumar R. and Singh B. (1998), 'Wave propagation in a generalized thermomicrostretch elastic solid', Int. J. Eng. Sci., 36, 891-912 https://doi.org/10.1016/S0020-7225(97)00099-2
  11. Liu X. and Hu G. (2004), 'Inclusion problem of microstretch continuum', Int. J. Eng. Sci., 42, 849-860 https://doi.org/10.1016/j.ijengsci.2003.07.011
  12. Lomarkin, V.A. (1976), 'The theory of elasticity of non-homogeneous bodies', Moscow
  13. Rishin, V.V., Lyashenko, B.A., Akinin, K.G. and Nadezhdin G.N. (1973), 'Temperature dependence of adhesion strength and elasticity of some heat resistant coatings', Strength Mat.(USSR), 5, 123-126 https://doi.org/10.1007/BF00762888
  14. Sturnin, D.V. (2001), 'On characteristics times in generalized thermoelasticity', J. Appl. Math., 68, 816-817
  15. Svanadze M. (2004), 'Fundamental solution of the system of equations of steady oscillations in the theory of microstretch elastic solids', Int. J. Eng. Sci., 42, 1897-1910 https://doi.org/10.1016/j.ijengsci.2004.07.001
  16. Szueces, F., Werner, M., Sussmann R.S., Pickles, C.S.J. and Frecht M.J. (1999), 'Temperature dependence of Young's modulus and degradation of chemical vapor deposited diamond', J. Appl. Phys., 86, 6010-6017 https://doi.org/10.1063/1.371648
  17. Tanigawa, T. (1995), 'Some basic thermoelastic problem from nonhomogeneous structural materials', Appl. Mech. Rievew, 117, 8-16

Cited by

  1. Evaluation of inverse Fourier transforms through romberg integration vol.47, pp.3-4, 2010, https://doi.org/10.1016/j.ijsolstr.2009.10.011