DOI QR코드

DOI QR Code

Automatic generation of equilibrium and flexibility matrices for plate bending elements using Integrated Force Method

  • Dhananjaya, H.R. (Department of Civil Engineering, Manipal Institute Technology) ;
  • Nagabhushanam, J. (Department of Aerospace Engineering, Indian Institute of Science) ;
  • Pandey, P.C. (Department of Civil Engineering, Indian Institute of Science)
  • Received : 2006.08.10
  • Accepted : 2008.06.03
  • Published : 2008.11.10

Abstract

The Integrated Force Method (IFM) has been developed in recent years for the analysis of civil, mechanical and aerospace engineering structures. In this method all independent or internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. The solution by IFM needs the computation of element equilibrium and flexibility matrices from the assumed displacement, stress-resultant fields and material properties. This paper presents a general purpose code for the automatic generation of element equilibrium and flexibility matrices for plate bending elements using the Integrated Force Method. Kirchhoff and the Mindlin-Reissner plate theories have been employed in the code. Paper illustrates development of element equilibrium and flexibility matrices for the Mindlin-Reissner theory based four node quadrilateral plate bending element using the Integrated Force Method.

Keywords

References

  1. Beltzer A.L. (1990), "Engineering analysis via symbolic computations a break through", Appl. Mech. Review, 43, 119-127 https://doi.org/10.1115/1.3120790
  2. Chang, T.Y., Tan H.Q., Zheng D. and Yuan M.W. (1990), "Application of symbolic method to hybrid or mixed finite elements and computer implementation", Comput. Struct., 35(4), 293-299 https://doi.org/10.1016/0045-7949(90)90055-7
  3. Cecchi, M.M. and Lami, C. (1977, online 2005), "Automatic generation of stiffness matrices for the finite element analysis", Int. J. Numer. Meth. Eng., 11, 396-400 https://doi.org/10.1002/nme.1620110216
  4. Chee, C., Tong, L., and Steven, G. (2000), "Shape function generations using MACSYMA", Commun. Numer. Meth. Eng., 16, 705-719. https://doi.org/10.1002/1099-0887(200010)16:10<705::AID-CNM327>3.0.CO;2-O
  5. Chen Wanji and Cheun Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", Int. J. Numer. Meth. Eng., 47, 605-627 https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
  6. Foster, K.R. and Bau, H.H. (1989), "Symbolic computation programs for the personal computers", Science, 243, 679-684 https://doi.org/10.1126/science.243.4891.679
  7. Griffiths, D.V. (1994), "Stiffness matrix of the four node quadrilateral element in closed form", Int. J. Numer. Meth. Eng., 1994, 37, 1028-1038
  8. Gunderson, R.H. and Cetiner (1971), "Element stiffness matrix generator", J. Struct. Div., ASCE, 97, 363-375
  9. Hoa, S.V. and Shankar, S. (1980), "A computer program for automatic generation of stiffness and mass matrices in finite element analysis", Comput. Struct., 11, 147-161 https://doi.org/10.1016/0045-7949(80)90154-6
  10. Jane Liu, Riggs, H.R. and Alexander Tessler. (2000), "A four node shear-deformable shell element developed via explicit Kirchhoff constraints", Int. J. Numer. Meth. Eng., 49, 1065-1086 https://doi.org/10.1002/1097-0207(20001120)49:8<1065::AID-NME992>3.0.CO;2-5
  11. Korncoff, A.R. and Fenves, S.J. (1979), "Symbolic generation of finite element stiffeness matrices," Comput. Struct., 10, 119-124 https://doi.org/10.1016/0045-7949(79)90078-6
  12. Lee, C.K. and Hobbs, R.E. (1998), "Closed form stiffness matrix solutions for some commonly used hybrid finite elements", Comput. Struct., 67, 463-482 https://doi.org/10.1016/S0045-7949(98)00055-8
  13. Luft, R.W., Roesset, J.M. and Connor, J.J. (1971), "Automatic generation of finite element matrices", J. Struct.Div., ASCE, 97, 349-362
  14. Krishnam Raju, N.R.B. and Nagabhushanam, J. (2000), "Non-linear structural analysis using integrated force method", Sadhana, 25(4), 353-365 https://doi.org/10.1007/BF03029720
  15. Mbakogu, F.C. and Pavlovic, M.N. (1999), "Some applications of computer algebra to classical problems in plate theory", Int. J. Mech. Eng. Edu., 27, 348-365
  16. Nagabhushanam, J. and Patnaik, S.N. (1990), "General purpose program to generate compatibility matrix for the integrated force method", AIAA J., 28, 1838-1842 https://doi.org/10.2514/3.10488
  17. Nagabhushanam, J. and Srinivas, J. (1991), "Automatic generation of sparse and banded compatibility matrix for the integrated force method", Computer Mechanics '91, International Conference on Computing in Engineering Science, Patras, Greece, 20-25
  18. Nagabhushanam, J., Srinivas, C.S. and Gaonkar, G.H. (1992), "Symbolic generation of elemental matrices for finite elemental analysis", Comput. Struct., 42(3), 375-380 https://doi.org/10.1016/0045-7949(92)90033-V
  19. Noor, A.K. and Andersen, C.M. (1979), "Computerized symbolic manipulations in structural mechanics- progress and potential", Comput. Struct., 10, 95-118 https://doi.org/10.1016/0045-7949(79)90077-4
  20. Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 41, 237-251
  21. Patnaik, S.N. (1986), "Integrated force method verses standard force method", Comput. Struct., 22(2), 151-163 https://doi.org/10.1016/0045-7949(86)90061-1
  22. Patnaik, S.N., Hopkins, D.A. and Coroneos, R. (1996), "Structural optimization with approximate sensitivities", Comput. Struct., 58, 407-418 https://doi.org/10.1016/0045-7949(95)00123-X
  23. Pavlovic, M.N. (2003), "Review article on symbolic computation in structural engineering", Comput. Struct., 81, 2121-2136 https://doi.org/10.1016/S0045-7949(03)00286-4
  24. Timoshenko, S.P. and Krieger, S.W. (1959), Theory of Plates and Shells, Second Edition, McGraw Hill, New York

Cited by

  1. Application of the dual integrated force method to the analysis of the off-axis three-point flexure test of unidirectional composites vol.50, pp.3, 2016, https://doi.org/10.1177/0021998315576377
  2. Comparison between the stiffness method and the hybrid method applied to a circular ring vol.40, pp.2, 2018, https://doi.org/10.1007/s40430-018-1013-z
  3. Closed form solutions for element equilibrium and flexibility matrices of eight node rectangular plate bending element using integrated force method vol.40, pp.1, 2011, https://doi.org/10.12989/sem.2011.40.1.121