DOI QR코드

DOI QR Code

A locally refinable T-spline finite element method for CAD/CAE integration

  • Received : 2007.09.17
  • Accepted : 2008.07.23
  • Published : 2008.09.30

Abstract

T-splines are recently proposed mathematical tools for geometric modeling, which are generalizations of B-splines. Local refinement can be performed effectively using T-splines while it is not the case when B-splines or NURBS are used. Using T-splines, patches with unmatched boundaries can be combined easily without special techniques. In the present study, an analysis framework using T-splines is proposed. In this framework, T-splines are used both for description of geometries and for approximation of solution spaces. This analysis framework can be a basis of a CAD/CAE integrated approach. In this approach, CAD models are directly imported as the analysis models without additional finite element modeling. Some numerical examples are presented to illustrate the effectiveness of the current analysis framework.

Keywords

References

  1. Bazilevs, Y., Calo, V.M., Zhang, Y. and Hughes, T.J.R. (2006), "Isogeometric fluid-structure interaction analysis with applications to arterial blood flow", Comput. Mech., 38, 310-322. https://doi.org/10.1007/s00466-006-0084-3
  2. Cho, M. and Roh, H.Y. (2003), "Development of geometrically exact new shell elements based on general curvilinear co-ordinates", Int. J. Numer. Meth. Eng., 56, 81-115. https://doi.org/10.1002/nme.546
  3. Cirak, F. and Ortiz, M. (2001), "Fully $C^1$-conforming subdivision elements for finite deformation thin-shell analysis", Int. J. Numer. Meth. Eng., 51, 813-833. https://doi.org/10.1002/nme.182.abs
  4. Cirak, F., Ortiz, M. and Schrder, P. (2000), "Subdivision surfaces: a new paradigm for thin-shell finite-element analysis", Int. J. Numer. Meth. Eng., 47, 2039-2072. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
  5. Cirak, F., Scott, M.J., Antonsson, E.K., Ortiz, M. and Schrder, P. (2002), "Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision", Comput. Aided Des., 34, 137-148. https://doi.org/10.1016/S0010-4485(01)00061-6
  6. Cottrell, J.A., Hughes, T.J.R. and Reali, A. (2007), "Studies of refinement and continuity in isogeometric structural analysis", Comput. Meth. Appl. Mech. Eng., 196, 4160-4183. https://doi.org/10.1016/j.cma.2007.04.007
  7. Cottrell, J.A., Reali, A., Bazilevs, Y. and Hughes, T.J.R. (2006), "Isogeometric analysis of structural vibrations", Comput. Meth. Appl. Mech. Eng., 195, 5257-5296. https://doi.org/10.1016/j.cma.2005.09.027
  8. Fan, S.C. and Luah, M.H. (1993), "Nine node spline element for free vibration analysis of general plates", J. Sound Vib., 165, 85-100. https://doi.org/10.1006/jsvi.1993.1244
  9. Guthe, M., Balazs, A. and Klein, R. (2005), "GPU-based trimming and tessellation of NURBS and T-Spline surfaces", ACM T. Graphic., 24, 1016-1023. https://doi.org/10.1145/1073204.1073305
  10. Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  11. Inoue, K., Kikuchi, Y. and Masuyama, T. (2005), "A NURBS finite element method for product shape design", J. Eng. Des., 16, 157-174. https://doi.org/10.1080/01405110500033127
  12. Kim, J.H., Lee, C.S. and Kim, S.J. (2005), "High-performance domain-wise parallel direct solver for large-scale structural analysis", AIAA J., 43, 662-670. https://doi.org/10.2514/1.11171
  13. Kim, K.-S. (2007), A study on T-spline Finite Element Analysis with Local Refinement, M.S. Dissertation, KAIST.
  14. Kim, K.-S., Seo, Y.-D. and Youn, S.-K. (2007), "Spline-based finite element analysis with T-spline local refinement", Proceeding of the International Conference on Computational Methods (ICCM 2007), Hiroshima, Japan, p. 188.
  15. Li, C.J., Wang, R.H. and Zhang, F. (2006), "Improvement on the dimensions of spline spaces on T-Mesh", J. Inf. Comput. Sci., 3, 235-244.
  16. Moore, C.J., Yang, T.Y. and Anderson, D.C. (1984), "New 48 D.O.F. quadrilateral shell element with variableorder polynomial and rational B-spline geometries with rigid body modes", Int. J. Numer. Meth. Eng., 20, 2121-2141. https://doi.org/10.1002/nme.1620201114
  17. Mortenson, M.E. (2006), Geometric Modeling, Industrial Press Inc., New York, NY.
  18. Natekar, D., Zhang, X. and Subbarayan, G. (2004), "Constructive solid analysis: A hierarchical, geometry-based meshless analysis procedure for integrated design and analysis", Comput. Aided Des., 36, 473-486. https://doi.org/10.1016/S0010-4485(03)00129-5
  19. Pengcheng, S. and Peixiang, H. (1995), "Bending analysis of plates and spherical shells by multivariable spline element method based on generalized variational principle", Comput. Struct., 55, 151-157. https://doi.org/10.1016/0045-7949(94)00411-U
  20. Piegl, L.A. and Tiller, W. (1997), The NURBS Book (monographs in visual communication), Springer-Verlag , New York, NY.
  21. Rayasam, M., Srinivasan, V. and Subbarayan, G. (2007), "CAD inspired hierarchical partition of unity constructions for NURBS-based, meshless design, analysis and optimization", Int. J. Numer. Meth. Eng., 72, 1452-1489. https://doi.org/10.1002/nme.2046
  22. Rogers, D.F. (2001), An Introduction to NURBS with Historical Perspective, Academic Press, San Diego, CA.
  23. Roh, H.Y. and Cho, M. (2004), "The application of geometrically exact shell elements to B-spline surfaces", Comput. Meth. Appl. Mech. Eng., 193, 2261-2299. https://doi.org/10.1016/j.cma.2004.01.019
  24. Roh, H.Y. and Cho, M. (2005), "Integration of geometric design and mechanical analysis using B-spline functions on surface", Int. J. Numer. Meth. Eng., 62, 1927-1949. https://doi.org/10.1002/nme.1254
  25. Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J. and Lyche, T. (2004), "T-spline simplification and local refinement", ACM T. Graphic., 23, 276-283. https://doi.org/10.1145/1015706.1015715
  26. Sederberg, T.W., Zheng, J., Bakenov, A. and Nasri, A. (2003), "T-splines and T-NURCCs", ACM T. Graphic., 22, 477-484. https://doi.org/10.1145/882262.882295
  27. Shen, P.-C. and Kan, H.-B. (1991), "Multivariate spline element analysis for plate bending problems", Comput. Struct., 40, 1343-1349. https://doi.org/10.1016/0045-7949(91)90405-B
  28. Song, W. and Yang, X. (2005), "Free-form deformation with weighted T-spline", Visual Comput., 21, 139-151. https://doi.org/10.1007/s00371-004-0277-8
  29. Timoshenko, S.P. and Goodier, J.N. (1987), Theory of Elasticity, McGraw-Hill, New York, NY.
  30. Uhm, T.-K., Seo, Y.-D., Kim, H.-J. and Youn, S.-K. (2007), "T-spline finite element method with local refinement", Proceedings of 9th U.S. National Congress on Computational Mechanics, San Francisco, U.S., p. 291.
  31. Zhang, X. and Subbarayan, G. (2006), "jNURBS: An object-oriented, symbolic framework for integrated, meshless analysis and optimal design", Adv. Eng. Softw., 37, 287-311. https://doi.org/10.1016/j.advengsoft.2005.08.001
  32. Zhang, X., Rayasam, M. and Subbarayan, G. (2007), "A meshless, compositional approach to shape optimal design", Comput. Meth. Appl. Mech. Eng., 196, 2130-2146. https://doi.org/10.1016/j.cma.2006.11.008
  33. Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C.L. and Hughes, T.J.R. (2007), "Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow", Comput. Meth. Appl. Mech. Eng., 196, 2943-2959. https://doi.org/10.1016/j.cma.2007.02.009

Cited by

  1. T-spline finite element method for the analysis of shell structures vol.80, pp.4, 2009, https://doi.org/10.1002/nme.2648
  2. Shape optimization and its extension to topological design based on isogeometric analysis vol.47, pp.11-12, 2010, https://doi.org/10.1016/j.ijsolstr.2010.03.004
  3. Study of the Shape Optimization in Spline FEM Considering both NURBS Control Point Positions and Weights as Design Variables vol.38, pp.4, 2014, https://doi.org/10.3795/KSME-A.2014.38.4.363
  4. Isogeometric analysis for trimmed CAD surfaces vol.198, pp.37-40, 2009, https://doi.org/10.1016/j.cma.2009.05.004
  5. A HIERARCHICALLY SUPERIMPOSING LOCAL REFINEMENT METHOD FOR ISOGEOMETRIC ANALYSIS vol.11, pp.05, 2014, https://doi.org/10.1142/S0219876213500746
  6. Numerical method for shape optimization using T-spline based isogeometric method vol.42, pp.3, 2010, https://doi.org/10.1007/s00158-010-0503-0
  7. Isogeometric topology optimization using trimmed spline surfaces vol.199, pp.49-52, 2010, https://doi.org/10.1016/j.cma.2010.06.033
  8. Isogeometric analysis with trimming technique for problems of arbitrary complex topology vol.199, pp.45-48, 2010, https://doi.org/10.1016/j.cma.2010.04.015
  9. Isogeometric contact analysis using mortar method vol.89, pp.12, 2012, https://doi.org/10.1002/nme.3300
  10. A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis vol.209-212, 2012, https://doi.org/10.1016/j.cma.2011.08.008
  11. Spline-based meshfree method vol.92, pp.9, 2012, https://doi.org/10.1002/nme.4360
  12. 트림 NURBS 곡면의 T-스플라인 유한요소해석 vol.33, pp.2, 2008, https://doi.org/10.3795/ksme-a.2009.33.2.135