References
- Bazilevs, Y., Calo, V.M., Zhang, Y. and Hughes, T.J.R. (2006), "Isogeometric fluid-structure interaction analysis with applications to arterial blood flow", Comput. Mech., 38, 310-322. https://doi.org/10.1007/s00466-006-0084-3
- Cho, M. and Roh, H.Y. (2003), "Development of geometrically exact new shell elements based on general curvilinear co-ordinates", Int. J. Numer. Meth. Eng., 56, 81-115. https://doi.org/10.1002/nme.546
-
Cirak, F. and Ortiz, M. (2001), "Fully
$C^1$ -conforming subdivision elements for finite deformation thin-shell analysis", Int. J. Numer. Meth. Eng., 51, 813-833. https://doi.org/10.1002/nme.182.abs - Cirak, F., Ortiz, M. and Schrder, P. (2000), "Subdivision surfaces: a new paradigm for thin-shell finite-element analysis", Int. J. Numer. Meth. Eng., 47, 2039-2072. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
- Cirak, F., Scott, M.J., Antonsson, E.K., Ortiz, M. and Schrder, P. (2002), "Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision", Comput. Aided Des., 34, 137-148. https://doi.org/10.1016/S0010-4485(01)00061-6
- Cottrell, J.A., Hughes, T.J.R. and Reali, A. (2007), "Studies of refinement and continuity in isogeometric structural analysis", Comput. Meth. Appl. Mech. Eng., 196, 4160-4183. https://doi.org/10.1016/j.cma.2007.04.007
- Cottrell, J.A., Reali, A., Bazilevs, Y. and Hughes, T.J.R. (2006), "Isogeometric analysis of structural vibrations", Comput. Meth. Appl. Mech. Eng., 195, 5257-5296. https://doi.org/10.1016/j.cma.2005.09.027
- Fan, S.C. and Luah, M.H. (1993), "Nine node spline element for free vibration analysis of general plates", J. Sound Vib., 165, 85-100. https://doi.org/10.1006/jsvi.1993.1244
- Guthe, M., Balazs, A. and Klein, R. (2005), "GPU-based trimming and tessellation of NURBS and T-Spline surfaces", ACM T. Graphic., 24, 1016-1023. https://doi.org/10.1145/1073204.1073305
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Inoue, K., Kikuchi, Y. and Masuyama, T. (2005), "A NURBS finite element method for product shape design", J. Eng. Des., 16, 157-174. https://doi.org/10.1080/01405110500033127
- Kim, J.H., Lee, C.S. and Kim, S.J. (2005), "High-performance domain-wise parallel direct solver for large-scale structural analysis", AIAA J., 43, 662-670. https://doi.org/10.2514/1.11171
- Kim, K.-S. (2007), A study on T-spline Finite Element Analysis with Local Refinement, M.S. Dissertation, KAIST.
- Kim, K.-S., Seo, Y.-D. and Youn, S.-K. (2007), "Spline-based finite element analysis with T-spline local refinement", Proceeding of the International Conference on Computational Methods (ICCM 2007), Hiroshima, Japan, p. 188.
- Li, C.J., Wang, R.H. and Zhang, F. (2006), "Improvement on the dimensions of spline spaces on T-Mesh", J. Inf. Comput. Sci., 3, 235-244.
- Moore, C.J., Yang, T.Y. and Anderson, D.C. (1984), "New 48 D.O.F. quadrilateral shell element with variableorder polynomial and rational B-spline geometries with rigid body modes", Int. J. Numer. Meth. Eng., 20, 2121-2141. https://doi.org/10.1002/nme.1620201114
- Mortenson, M.E. (2006), Geometric Modeling, Industrial Press Inc., New York, NY.
- Natekar, D., Zhang, X. and Subbarayan, G. (2004), "Constructive solid analysis: A hierarchical, geometry-based meshless analysis procedure for integrated design and analysis", Comput. Aided Des., 36, 473-486. https://doi.org/10.1016/S0010-4485(03)00129-5
- Pengcheng, S. and Peixiang, H. (1995), "Bending analysis of plates and spherical shells by multivariable spline element method based on generalized variational principle", Comput. Struct., 55, 151-157. https://doi.org/10.1016/0045-7949(94)00411-U
- Piegl, L.A. and Tiller, W. (1997), The NURBS Book (monographs in visual communication), Springer-Verlag , New York, NY.
- Rayasam, M., Srinivasan, V. and Subbarayan, G. (2007), "CAD inspired hierarchical partition of unity constructions for NURBS-based, meshless design, analysis and optimization", Int. J. Numer. Meth. Eng., 72, 1452-1489. https://doi.org/10.1002/nme.2046
- Rogers, D.F. (2001), An Introduction to NURBS with Historical Perspective, Academic Press, San Diego, CA.
- Roh, H.Y. and Cho, M. (2004), "The application of geometrically exact shell elements to B-spline surfaces", Comput. Meth. Appl. Mech. Eng., 193, 2261-2299. https://doi.org/10.1016/j.cma.2004.01.019
- Roh, H.Y. and Cho, M. (2005), "Integration of geometric design and mechanical analysis using B-spline functions on surface", Int. J. Numer. Meth. Eng., 62, 1927-1949. https://doi.org/10.1002/nme.1254
- Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J. and Lyche, T. (2004), "T-spline simplification and local refinement", ACM T. Graphic., 23, 276-283. https://doi.org/10.1145/1015706.1015715
- Sederberg, T.W., Zheng, J., Bakenov, A. and Nasri, A. (2003), "T-splines and T-NURCCs", ACM T. Graphic., 22, 477-484. https://doi.org/10.1145/882262.882295
- Shen, P.-C. and Kan, H.-B. (1991), "Multivariate spline element analysis for plate bending problems", Comput. Struct., 40, 1343-1349. https://doi.org/10.1016/0045-7949(91)90405-B
- Song, W. and Yang, X. (2005), "Free-form deformation with weighted T-spline", Visual Comput., 21, 139-151. https://doi.org/10.1007/s00371-004-0277-8
- Timoshenko, S.P. and Goodier, J.N. (1987), Theory of Elasticity, McGraw-Hill, New York, NY.
- Uhm, T.-K., Seo, Y.-D., Kim, H.-J. and Youn, S.-K. (2007), "T-spline finite element method with local refinement", Proceedings of 9th U.S. National Congress on Computational Mechanics, San Francisco, U.S., p. 291.
- Zhang, X. and Subbarayan, G. (2006), "jNURBS: An object-oriented, symbolic framework for integrated, meshless analysis and optimal design", Adv. Eng. Softw., 37, 287-311. https://doi.org/10.1016/j.advengsoft.2005.08.001
- Zhang, X., Rayasam, M. and Subbarayan, G. (2007), "A meshless, compositional approach to shape optimal design", Comput. Meth. Appl. Mech. Eng., 196, 2130-2146. https://doi.org/10.1016/j.cma.2006.11.008
- Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C.L. and Hughes, T.J.R. (2007), "Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow", Comput. Meth. Appl. Mech. Eng., 196, 2943-2959. https://doi.org/10.1016/j.cma.2007.02.009
Cited by
- T-spline finite element method for the analysis of shell structures vol.80, pp.4, 2009, https://doi.org/10.1002/nme.2648
- Shape optimization and its extension to topological design based on isogeometric analysis vol.47, pp.11-12, 2010, https://doi.org/10.1016/j.ijsolstr.2010.03.004
- Study of the Shape Optimization in Spline FEM Considering both NURBS Control Point Positions and Weights as Design Variables vol.38, pp.4, 2014, https://doi.org/10.3795/KSME-A.2014.38.4.363
- Isogeometric analysis for trimmed CAD surfaces vol.198, pp.37-40, 2009, https://doi.org/10.1016/j.cma.2009.05.004
- A HIERARCHICALLY SUPERIMPOSING LOCAL REFINEMENT METHOD FOR ISOGEOMETRIC ANALYSIS vol.11, pp.05, 2014, https://doi.org/10.1142/S0219876213500746
- Numerical method for shape optimization using T-spline based isogeometric method vol.42, pp.3, 2010, https://doi.org/10.1007/s00158-010-0503-0
- Isogeometric topology optimization using trimmed spline surfaces vol.199, pp.49-52, 2010, https://doi.org/10.1016/j.cma.2010.06.033
- Isogeometric analysis with trimming technique for problems of arbitrary complex topology vol.199, pp.45-48, 2010, https://doi.org/10.1016/j.cma.2010.04.015
- Isogeometric contact analysis using mortar method vol.89, pp.12, 2012, https://doi.org/10.1002/nme.3300
- A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis vol.209-212, 2012, https://doi.org/10.1016/j.cma.2011.08.008
- Spline-based meshfree method vol.92, pp.9, 2012, https://doi.org/10.1002/nme.4360
- 트림 NURBS 곡면의 T-스플라인 유한요소해석 vol.33, pp.2, 2008, https://doi.org/10.3795/ksme-a.2009.33.2.135