References
- Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ
- Chen, W.F. (2003), Elasticity and Plasticity, China Architecture & Building Press
- Dasgupta, G. (2003), "Integration within polygonal finite elements", J. Aerospace Eng., 16(1), 9-18 https://doi.org/10.1061/(ASCE)0893-1321(2003)16:1(9)
- Dikshit, H.P. and Ojha, A. (1991), "Dimensions of spaces of Wachspress type C1 rational finite element", Comput. Math. Appl., 22(3), 23-26
- Dikshit, H.P. and Ojha, A. (2002), "On C1-Continuity of Wachspress quadrilateral patches", Comput. Aided Geom. D., 19, 207-222 https://doi.org/10.1016/S0167-8396(01)00083-8
- Elisabeth, A.M. and Gautam, D. (2004), "Interpolations for temperature distributions: a method for all nonconcave polygons", Int. J. Numer. Meth. Eng., 41(1), 2165-2188
- Floater, M.S. (2003), "Mean value coordinates", Comput. Aided Geom. D., 20, 93-99
- Ghost, S. and Mallett, R.L. (1994), "Voronoi cell finite elements", Comput. Struct., 50(1), 33-46 https://doi.org/10.1016/0045-7949(94)90435-9
- Laydi, M.R. and Aoubiza, B. (1995), "Wachspress rational finite element of arbitrary degree", Comptes Rendus de L Academie Des Sciences Serie I-Mathematique, 320(11), 1391-1394
- Liu, G.R. and Gu, Y.T. (2001), "A local point interpolation method for stress analysisof two-dimensional solids", Struct. Eng. Mech., 11(2), 221-236 https://doi.org/10.12989/sem.2001.11.2.221
- Liu, G.R., Yan, L., Wang, J.G. and Gu, Y.T. (2002), "Point interpolation method based on local residualformulation using radial basis functions", Struct. Eng. Mech., 14(6), 713-732 https://doi.org/10.12989/sem.2002.14.6.713
- Lu, X.Z., Jiang, J.J. and Ye, L.P. (2006), "A composite crack model for concrete based on meshless method", Struct. Eng. Mech., 23(3), 217-232 https://doi.org/10.12989/sem.2006.23.3.217
- Meyer, M., Lee, H., Barr, A.H. and Desbrun, M. (2002), "Generalized barycentric coordinates on irregular polygons", J. Graphics Tools, 7(1), 13-22
- Most, T. and Bucher, C. (2005), "A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions", Struct. Eng. Mech., 21(3), 315-332 https://doi.org/10.12989/sem.2005.21.3.315
- Powar, P.L. and Rana, S.S. (1991), "A counterexample of the construction of C1 rational finite element due to Watchspress", Comput. Math. Appl., 22(3), 17-22 https://doi.org/10.1016/0898-1221(91)90065-C
- Sukumar, N., Moran, B. and Semenov, Y. (2001), "Natural neighbour galerkin method", Int. J. Numer. Meth. Eng., 50, 1-27 https://doi.org/10.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P
- Sukumar, N., Moran, B. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Meth. Eng., 43, 839-887 https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
- Sukumar, N. and Tabarraei, A. (2004), "Conforming polygonal finite elements", Int. J. Numer. Meth. Eng., 61, 2045-2066 https://doi.org/10.1002/nme.1141
- Sukumar, N. and Malsch, E.A. (2006), "Recent advances in the construction polygonal finite interpolants", Arch. Comput. Meth. Eng., 13(1), 129-163 https://doi.org/10.1007/BF02905933
- Wachspress, E.L. (1975), A Rational Finite Element Basis, New York: Academic Press, Inc
Cited by
- A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates vol.43, pp.2, 2008, https://doi.org/10.12989/sem.2012.43.2.253