DOI QR코드

DOI QR Code

The elastoplastic formulation of polygonal element method based on triangular finite meshes

  • Cai, Yong-Chang (Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University) ;
  • Zhu, He-Hua (Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University) ;
  • Guo, Sheng-Yong (Ertan Hydropower Development Company, Ltd.)
  • Received : 2007.09.13
  • Accepted : 2008.07.15
  • Published : 2008.09.10

Abstract

A small strain and elastoplastic formulation of Polygonal Element Method (PEM) is developed for efficient analysis of elastoplastic solids. In this work, the polygonal elements are constructed based on traditional triangular finite meshes. The construction method of polygonal mesh can directly utilize the sophisticated triangularization algorithm and reduce the difficulty in generating polygonal elements. The Wachspress rational finite element basis function is used to construct the approximations of polygonal elements. The incremental variational form and a von Mises type model are used for non-linear elastoplastic analysis. Several small strain elastoplastic numerical examples are presented to verify the advantages and the accuracy of the numerical formulation.

Keywords

References

  1. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ
  2. Chen, W.F. (2003), Elasticity and Plasticity, China Architecture & Building Press
  3. Dasgupta, G. (2003), "Integration within polygonal finite elements", J. Aerospace Eng., 16(1), 9-18 https://doi.org/10.1061/(ASCE)0893-1321(2003)16:1(9)
  4. Dikshit, H.P. and Ojha, A. (1991), "Dimensions of spaces of Wachspress type C1 rational finite element", Comput. Math. Appl., 22(3), 23-26
  5. Dikshit, H.P. and Ojha, A. (2002), "On C1-Continuity of Wachspress quadrilateral patches", Comput. Aided Geom. D., 19, 207-222 https://doi.org/10.1016/S0167-8396(01)00083-8
  6. Elisabeth, A.M. and Gautam, D. (2004), "Interpolations for temperature distributions: a method for all nonconcave polygons", Int. J. Numer. Meth. Eng., 41(1), 2165-2188
  7. Floater, M.S. (2003), "Mean value coordinates", Comput. Aided Geom. D., 20, 93-99
  8. Ghost, S. and Mallett, R.L. (1994), "Voronoi cell finite elements", Comput. Struct., 50(1), 33-46 https://doi.org/10.1016/0045-7949(94)90435-9
  9. Laydi, M.R. and Aoubiza, B. (1995), "Wachspress rational finite element of arbitrary degree", Comptes Rendus de L Academie Des Sciences Serie I-Mathematique, 320(11), 1391-1394
  10. Liu, G.R. and Gu, Y.T. (2001), "A local point interpolation method for stress analysisof two-dimensional solids", Struct. Eng. Mech., 11(2), 221-236 https://doi.org/10.12989/sem.2001.11.2.221
  11. Liu, G.R., Yan, L., Wang, J.G. and Gu, Y.T. (2002), "Point interpolation method based on local residualformulation using radial basis functions", Struct. Eng. Mech., 14(6), 713-732 https://doi.org/10.12989/sem.2002.14.6.713
  12. Lu, X.Z., Jiang, J.J. and Ye, L.P. (2006), "A composite crack model for concrete based on meshless method", Struct. Eng. Mech., 23(3), 217-232 https://doi.org/10.12989/sem.2006.23.3.217
  13. Meyer, M., Lee, H., Barr, A.H. and Desbrun, M. (2002), "Generalized barycentric coordinates on irregular polygons", J. Graphics Tools, 7(1), 13-22
  14. Most, T. and Bucher, C. (2005), "A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions", Struct. Eng. Mech., 21(3), 315-332 https://doi.org/10.12989/sem.2005.21.3.315
  15. Powar, P.L. and Rana, S.S. (1991), "A counterexample of the construction of C1 rational finite element due to Watchspress", Comput. Math. Appl., 22(3), 17-22 https://doi.org/10.1016/0898-1221(91)90065-C
  16. Sukumar, N., Moran, B. and Semenov, Y. (2001), "Natural neighbour galerkin method", Int. J. Numer. Meth. Eng., 50, 1-27 https://doi.org/10.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P
  17. Sukumar, N., Moran, B. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Meth. Eng., 43, 839-887 https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
  18. Sukumar, N. and Tabarraei, A. (2004), "Conforming polygonal finite elements", Int. J. Numer. Meth. Eng., 61, 2045-2066 https://doi.org/10.1002/nme.1141
  19. Sukumar, N. and Malsch, E.A. (2006), "Recent advances in the construction polygonal finite interpolants", Arch. Comput. Meth. Eng., 13(1), 129-163 https://doi.org/10.1007/BF02905933
  20. Wachspress, E.L. (1975), A Rational Finite Element Basis, New York: Academic Press, Inc

Cited by

  1. A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates vol.43, pp.2, 2008, https://doi.org/10.12989/sem.2012.43.2.253