참고문헌
- Anthoine, A. (1995), "Derivation of in-plane elastic characteristics of masonry through homogenization theory", Int. J. Solids Struct., 32(3), 137-163 https://doi.org/10.1016/0020-7683(94)00140-R
- Anthoine, A. (1997), "Homogenization of periodic masonry: Plane stress, generalized plane strain or threedimensional modelling?", Commun. Numer. Meth. Eng., 13, 319-326 https://doi.org/10.1002/(SICI)1099-0887(199705)13:5<319::AID-CNM55>3.0.CO;2-S
- Bazant, Z.P. and Kazemi, M.T. (1991), "Size dependence of concrete fracture energy determined by RILEM work-of-fracture method", Int. J. Fract., 51(2), 121-138
- Bittnar, Z. and Sejnoha, J. (1996), Numerical Methods in Structural Mechanics, ASCE Press and Thomas Telford Publications, New York and London
- Bruhwiler, E. and Wittmann, F.H. (1990), "The wedge splitting test, a new method of performing stable fracture mechanics tests", Eng. Fract. Mech., 35(1-3), 117-125 https://doi.org/10.1016/0013-7944(90)90189-N
- Carpinteri, A., Invernizzi, S. and Lacidogna, G. (2006), "Numerical assessment of three medieval masonry towers subjected to different loading conditions", Masonry Int., 19, 65-76
- Cerny, R. and Rovnanikova, P. (2002) Transport Processes in Concrete, Spon Press, London
- Cluni, F. and Gusella, V. (2004) "Homogenization of non-periodic masonry structures", Int. J. Solids Struct., 41(7), 1911-1923 https://doi.org/10.1016/j.ijsolstr.2003.11.011
- Cervenka V. (2002), "Computer simulation of failure of concrete structures for practice", In: Proceedings of the First FIB Congress 2002, Concrete Structures in the 21st Century, 289-304, Available at http://www.cCervenka.cz/papers
- Cervenka, V., Jendele, L. and Cervenka, J. (2002), ATENA Program Documentation - Part I: Theory, Cervenka Consulting Company, Czech Republic
- De Proft, K. and Sluys, L.J. (2005), "Modelling masonry structures using the partition of unity method", Proc. of Eighth Conf. on Computational Plasticity (COMPLAS VIII), Barcelona
- Duan, K., Zhi, H.X. and Wittmann, F.H. (2003), "Thickness effect on fracture energy of cementitious materials", Cement Concrete Res., 33, 499-507 https://doi.org/10.1016/S0008-8846(02)00997-3
- Giambanco, G., Rizzo, S. and Spallino, R. (2001), "Numerical analysis of masonry structures via interface models", Comput. Meth. Appl. M., 190, 6493-6511 https://doi.org/10.1016/S0045-7825(01)00225-0
- Hart, V.R., Cundall, P. and Lemos, J. (1998), "Formulation of a three-dimensional distinct element model - Part ii: Mechanical calculations for motions and interaction of a system composed of many polyhedral blocks", Int. J. Rock. Mech. Min., 25, 117-126
- Karihaloo, B.L., Abdalla, H.M. and Imjai, T. (2003), "A simple method for determining the true specific fracture energy of concrete", Mag. Concrete Res., 55(5), 471-481 https://doi.org/10.1680/macr.55.5.471.37590
- Kouznetsova, V., Brekelmans, W.A.M. and Baaijens, F.P.T. (2001), "An approach to micro-macro modeling of heterogeneous materials", Comput. Mech., 27(1), 37-48 https://doi.org/10.1007/s004660000212
- Lourenco, P.B. (2002), "Computations on historic masonry structures", Prog. Struct. Eng. Mater., 4(3), 301-319 https://doi.org/10.1002/pse.120
- Lourenco P.B., de Borst, R. and Rots, J.G. (1997), "A plane stress softening plasticity model for orthotropic materials", Int. J. Numer. Meth. Eng., 40(21), 4033-4057 https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<4033::AID-NME248>3.0.CO;2-0
- Lourenco P.B. and Rots, J.G. (1997), "A multi-surface interface model for the analysis of masonry structures", J. Eng. Mech., ASCE, 123(7), 660-668 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660)
- Massart, T.J., Peerlings, R.H.J. and Geers, M.G.D. (2007), "An enhanced multi-scale approach for masonry wall computations with localization of damage", Int. J. Numer. Meth. Eng., 69(5), 1022-1059 https://doi.org/10.1002/nme.1799
- Michel, J.C., Moulinec, H. and Suquet, P. (1999), "Effective properties of composite materials with periodic microstructure: A computational approach", Comput. Meth. Appl. M., 172, 109-143 https://doi.org/10.1016/S0045-7825(98)00227-8
- Milani, G. (2004), Homogenization Techniques for in- and Out-of-plane Loaded Masonry Structures, Ph.D. Thesis, University of Ferrara
- Novak, J., Sejnoha, M. and Zeman, J. (2005), "On representative volume element size for the analysis of masonry structures", Proceedings of the Tenth Int. Conf. on Civil Structural and Environmental Engineering Computing, Stirling
- Novak, J., Voka , M. and Sejnoha, M. (2006), "Experimental identification of nonlinear material parameters of regular brick masonry", Proceedings of 5th International Congress of Croatian Society of Mechanics, Zagreb
- Papa, E. and Nappi, A. (1997), "Numerical modelling of masonry: A material model accounting for damage effects and plastic strains", Appl. Mathem. Model., 21, 319-335 https://doi.org/10.1016/S0307-904X(97)00011-5
- Pande, G.N., Liang, J.X. and Middleton, J. (1989), "Equivalent elastic moduli for brick masonry", Comput. Geotech., 8, 243-265 https://doi.org/10.1016/0266-352X(89)90045-1
- Phillips, R. (1998), "Multiscale modeling in the mechanics of materials", Curr. Opin. Solid St.M., 3, 526-532 https://doi.org/10.1016/S1359-0286(98)80020-X
- Povirk, G.L. (1995), "Incorporation of microstructural information into models of two-phase materials", Acta Mater., 43(8), 3199-3206 https://doi.org/10.1016/0956-7151(94)00487-3
- RILEM Committee FMC 50 1985 (1985), "Determination of the fracture energy of mortar and concrete by means of the three-point bend tests on notched beams", Mater. Struct., 18, 285-290 https://doi.org/10.1007/BF02472917
- Sejnoha, M., Sejnoha, J., Sykora, J., Novotna, E. and Vorel, J.(2006), "Prediction of the effective fracture energy in quarry masonry", Proceedings of the Eighth International Conference on Computational Structures Technology, Stirling
- Smit, R.M.J., Breckelmans, W.A.M. and Meijer, H.E.H. (1998), "Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modelling", Comput. Method. Appl. M., 155, 181-192 https://doi.org/10.1016/S0045-7825(97)00139-4
- Teply, J. and Dvorak G.J. (1988), "Bounds on overall instantaneous properties of elastic-plastic composites", J. Mech. Phys. Solids, 36, 29-58 https://doi.org/10.1016/0022-5096(88)90019-1
- Torquato, S. (2002), Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, New York
- Vandoros, K.G. and Dritsos, S.E. (2006), "Interface treatment in shotcrete jacketing of reinforced concrete columns to improve seismic performance", Struct. Eng. Mech., 23(1), 43-61 https://doi.org/10.12989/sem.2006.23.1.043
- Wang, S.H., Tang, C.A. and Jia, P. (2006), "Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach", Struct. Eng. Mech., 24(2), 181-194 https://doi.org/10.12989/sem.2006.24.2.181
- Zeman, J. and Sejnoha, M. (2001), "Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix", J. Mech. Phys. Solids, 49(1), 69-90 https://doi.org/10.1016/S0022-5096(00)00027-2
- Zeman, J. and Sejnoha, M. (2007), "From random microstructures to representative volume elements", Model. Simul. Mater. Sci., 15(4), S325-S335 https://doi.org/10.1088/0965-0393/15/4/S01
- Zeman, J., Novak, J., Sejnoha, M. and Sejnoha, J. (2008), "Pragmatic multi-scale and multi-physics analysis of Charles Bridge in Prague", Eng. Struct., accepted for publication, http://dx.doi.org/10.1016/j.engstruct.2008.05.012
피인용 문헌
- Failure surface of quasi-periodic masonry by means of Statistically Equivalent Periodic Unit Cell approach 2017, https://doi.org/10.1007/s11012-017-0771-5
- Homogenized and Heterogeneous Limit Analysis Model for Pushover Analysis of Ancient Masonry Walls with Irregular Texture vol.7, pp.3, 2013, https://doi.org/10.1080/15583058.2011.640737
- A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded vol.88, pp.11-12, 2010, https://doi.org/10.1016/j.compstruc.2010.02.009
- Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM vol.108, 2016, https://doi.org/10.1016/j.conbuildmat.2016.01.025
- Homogenization methods for interface modeling in damaged masonry vol.46, pp.1, 2012, https://doi.org/10.1016/j.advengsoft.2010.09.009
- Homogenization of coupled heat and moisture transport in masonry structures including interfaces vol.219, pp.13, 2013, https://doi.org/10.1016/j.amc.2011.02.050
- Strength domain of non-periodic masonry by homogenization in generalized plane state vol.30, pp.2, 2011, https://doi.org/10.1016/j.euromechsol.2010.10.009
- A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs vol.223-224, 2012, https://doi.org/10.1016/j.cma.2012.02.018
- Simplified out-of-plane modelling of three-leaf masonry walls accounting for the material texture vol.40, 2013, https://doi.org/10.1016/j.conbuildmat.2012.09.090
- Characterization of the response of quasi-periodic masonry: Geometrical investigation, homogenization and application to the Guimarães castle, Portugal vol.56, 2013, https://doi.org/10.1016/j.engstruct.2013.05.040
- Meso-scale analysis of FRC using a two-step homogenization approach vol.89, pp.11-12, 2011, https://doi.org/10.1016/j.compstruc.2011.02.006
- Kinematic FE homogenized limit analysis model for masonry curved structures strengthened by near surface mounted FRP bars vol.93, pp.1, 2010, https://doi.org/10.1016/j.compstruct.2010.05.013
- Physical and mechanical properties of the repaired sandstone ashlars in the facing masonry of the Charles Bridge in Prague (Czech Republic) and an analytical study for the causes of its rapid decay vol.63, pp.7-8, 2011, https://doi.org/10.1007/s12665-010-0819-5
- Micro-mechanical finite element modeling of diagonal compression test for historical stone masonry structure vol.112, 2017, https://doi.org/10.1016/j.ijsolstr.2017.02.014
- Contribution of clayey–calcareous silicite to the mechanical properties of structural mortared rubble masonry of the medieval Charles Bridge in Prague (Czech Republic) vol.115, pp.3-4, 2010, https://doi.org/10.1016/j.enggeo.2010.06.009
- FE homogenized limit analysis model for masonry strengthened by near surface bed joint FRP bars vol.92, pp.2, 2010, https://doi.org/10.1016/j.compstruct.2009.08.004
- Evaluation of a Statistically Equivalent Periodic Unit Cell for a quasi-periodic masonry vol.50, pp.25-26, 2013, https://doi.org/10.1016/j.ijsolstr.2013.08.027
- Homogenized limit analysis of masonry structures with random input properties: polynomial Response Surface approximation and Monte Carlo simulations vol.34, pp.4, 2008, https://doi.org/10.12989/sem.2010.34.4.417
- Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion vol.14, pp.5, 2008, https://doi.org/10.12989/was.2011.14.5.435
- Masonry elastic characteristics assessment by thermographic images vol.54, pp.9, 2008, https://doi.org/10.1007/s11012-019-00982-9
- Vulnerability and seismic improvement of architectural heritage: the case of Palazzo Murena vol.18, pp.3, 2020, https://doi.org/10.12989/eas.2020.18.3.321
- Numerical homogenization‐based seismic assessment of an English‐bond masonry prototype: Structural level application vol.49, pp.9, 2008, https://doi.org/10.1002/eqe.3267
- Elastic Properties Estimation of Masonry Walls through the Propagation of Elastic Waves: An Experimental Investigation vol.11, pp.19, 2008, https://doi.org/10.3390/app11199091
- A FE-Based Macro-Element for the Assessment of Masonry Structures: Linear Static, Vibration, and Non-Linear Cyclic Analyses vol.12, pp.3, 2008, https://doi.org/10.3390/app12031248