DOI QR코드

DOI QR Code

Mesoscopic study on historic masonry

  • Sejnoha, J. (Department of Mechanics, Faculty of Civil Engineering, Centre for Integrated Design of Advanced Structures) ;
  • Sejnoha, M. (Department of Mechanics, Faculty of Civil Engineering, Centre for Integrated Design of Advanced Structures) ;
  • Zeman, J. (Department of Mechanics, Faculty of Civil Engineering, CTU in Prague) ;
  • Sykora, J. (Department of Mechanics, Faculty of Civil Engineering, CTU in Prague) ;
  • Vorel, J. (Department of Mechanics, Faculty of Civil Engineering, CTU in Prague)
  • 투고 : 2007.07.18
  • 심사 : 2008.06.27
  • 발행 : 2008.09.10

초록

This paper presents a comprehensive approach to the evaluation of macroscopic material parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of both basic components, as well as the impaired cohesion and tensile strength on the interface between the blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material parameters of individual constituents either experimentally or running a mixed numerical-experimental problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive strengths and fracture energy.

키워드

참고문헌

  1. Anthoine, A. (1995), "Derivation of in-plane elastic characteristics of masonry through homogenization theory", Int. J. Solids Struct., 32(3), 137-163 https://doi.org/10.1016/0020-7683(94)00140-R
  2. Anthoine, A. (1997), "Homogenization of periodic masonry: Plane stress, generalized plane strain or threedimensional modelling?", Commun. Numer. Meth. Eng., 13, 319-326 https://doi.org/10.1002/(SICI)1099-0887(199705)13:5<319::AID-CNM55>3.0.CO;2-S
  3. Bazant, Z.P. and Kazemi, M.T. (1991), "Size dependence of concrete fracture energy determined by RILEM work-of-fracture method", Int. J. Fract., 51(2), 121-138
  4. Bittnar, Z. and Sejnoha, J. (1996), Numerical Methods in Structural Mechanics, ASCE Press and Thomas Telford Publications, New York and London
  5. Bruhwiler, E. and Wittmann, F.H. (1990), "The wedge splitting test, a new method of performing stable fracture mechanics tests", Eng. Fract. Mech., 35(1-3), 117-125 https://doi.org/10.1016/0013-7944(90)90189-N
  6. Carpinteri, A., Invernizzi, S. and Lacidogna, G. (2006), "Numerical assessment of three medieval masonry towers subjected to different loading conditions", Masonry Int., 19, 65-76
  7. Cerny, R. and Rovnanikova, P. (2002) Transport Processes in Concrete, Spon Press, London
  8. Cluni, F. and Gusella, V. (2004) "Homogenization of non-periodic masonry structures", Int. J. Solids Struct., 41(7), 1911-1923 https://doi.org/10.1016/j.ijsolstr.2003.11.011
  9. Cervenka V. (2002), "Computer simulation of failure of concrete structures for practice", In: Proceedings of the First FIB Congress 2002, Concrete Structures in the 21st Century, 289-304, Available at http://www.cCervenka.cz/papers
  10. Cervenka, V., Jendele, L. and Cervenka, J. (2002), ATENA Program Documentation - Part I: Theory, Cervenka Consulting Company, Czech Republic
  11. De Proft, K. and Sluys, L.J. (2005), "Modelling masonry structures using the partition of unity method", Proc. of Eighth Conf. on Computational Plasticity (COMPLAS VIII), Barcelona
  12. Duan, K., Zhi, H.X. and Wittmann, F.H. (2003), "Thickness effect on fracture energy of cementitious materials", Cement Concrete Res., 33, 499-507 https://doi.org/10.1016/S0008-8846(02)00997-3
  13. Giambanco, G., Rizzo, S. and Spallino, R. (2001), "Numerical analysis of masonry structures via interface models", Comput. Meth. Appl. M., 190, 6493-6511 https://doi.org/10.1016/S0045-7825(01)00225-0
  14. Hart, V.R., Cundall, P. and Lemos, J. (1998), "Formulation of a three-dimensional distinct element model - Part ii: Mechanical calculations for motions and interaction of a system composed of many polyhedral blocks", Int. J. Rock. Mech. Min., 25, 117-126
  15. Karihaloo, B.L., Abdalla, H.M. and Imjai, T. (2003), "A simple method for determining the true specific fracture energy of concrete", Mag. Concrete Res., 55(5), 471-481 https://doi.org/10.1680/macr.55.5.471.37590
  16. Kouznetsova, V., Brekelmans, W.A.M. and Baaijens, F.P.T. (2001), "An approach to micro-macro modeling of heterogeneous materials", Comput. Mech., 27(1), 37-48 https://doi.org/10.1007/s004660000212
  17. Lourenco, P.B. (2002), "Computations on historic masonry structures", Prog. Struct. Eng. Mater., 4(3), 301-319 https://doi.org/10.1002/pse.120
  18. Lourenco P.B., de Borst, R. and Rots, J.G. (1997), "A plane stress softening plasticity model for orthotropic materials", Int. J. Numer. Meth. Eng., 40(21), 4033-4057 https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<4033::AID-NME248>3.0.CO;2-0
  19. Lourenco P.B. and Rots, J.G. (1997), "A multi-surface interface model for the analysis of masonry structures", J. Eng. Mech., ASCE, 123(7), 660-668 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660)
  20. Massart, T.J., Peerlings, R.H.J. and Geers, M.G.D. (2007), "An enhanced multi-scale approach for masonry wall computations with localization of damage", Int. J. Numer. Meth. Eng., 69(5), 1022-1059 https://doi.org/10.1002/nme.1799
  21. Michel, J.C., Moulinec, H. and Suquet, P. (1999), "Effective properties of composite materials with periodic microstructure: A computational approach", Comput. Meth. Appl. M., 172, 109-143 https://doi.org/10.1016/S0045-7825(98)00227-8
  22. Milani, G. (2004), Homogenization Techniques for in- and Out-of-plane Loaded Masonry Structures, Ph.D. Thesis, University of Ferrara
  23. Novak, J., Sejnoha, M. and Zeman, J. (2005), "On representative volume element size for the analysis of masonry structures", Proceedings of the Tenth Int. Conf. on Civil Structural and Environmental Engineering Computing, Stirling
  24. Novak, J., Voka , M. and Sejnoha, M. (2006), "Experimental identification of nonlinear material parameters of regular brick masonry", Proceedings of 5th International Congress of Croatian Society of Mechanics, Zagreb
  25. Papa, E. and Nappi, A. (1997), "Numerical modelling of masonry: A material model accounting for damage effects and plastic strains", Appl. Mathem. Model., 21, 319-335 https://doi.org/10.1016/S0307-904X(97)00011-5
  26. Pande, G.N., Liang, J.X. and Middleton, J. (1989), "Equivalent elastic moduli for brick masonry", Comput. Geotech., 8, 243-265 https://doi.org/10.1016/0266-352X(89)90045-1
  27. Phillips, R. (1998), "Multiscale modeling in the mechanics of materials", Curr. Opin. Solid St.M., 3, 526-532 https://doi.org/10.1016/S1359-0286(98)80020-X
  28. Povirk, G.L. (1995), "Incorporation of microstructural information into models of two-phase materials", Acta Mater., 43(8), 3199-3206 https://doi.org/10.1016/0956-7151(94)00487-3
  29. RILEM Committee FMC 50 1985 (1985), "Determination of the fracture energy of mortar and concrete by means of the three-point bend tests on notched beams", Mater. Struct., 18, 285-290 https://doi.org/10.1007/BF02472917
  30. Sejnoha, M., Sejnoha, J., Sykora, J., Novotna, E. and Vorel, J.(2006), "Prediction of the effective fracture energy in quarry masonry", Proceedings of the Eighth International Conference on Computational Structures Technology, Stirling
  31. Smit, R.M.J., Breckelmans, W.A.M. and Meijer, H.E.H. (1998), "Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modelling", Comput. Method. Appl. M., 155, 181-192 https://doi.org/10.1016/S0045-7825(97)00139-4
  32. Teply, J. and Dvorak G.J. (1988), "Bounds on overall instantaneous properties of elastic-plastic composites", J. Mech. Phys. Solids, 36, 29-58 https://doi.org/10.1016/0022-5096(88)90019-1
  33. Torquato, S. (2002), Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, New York
  34. Vandoros, K.G. and Dritsos, S.E. (2006), "Interface treatment in shotcrete jacketing of reinforced concrete columns to improve seismic performance", Struct. Eng. Mech., 23(1), 43-61 https://doi.org/10.12989/sem.2006.23.1.043
  35. Wang, S.H., Tang, C.A. and Jia, P. (2006), "Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach", Struct. Eng. Mech., 24(2), 181-194 https://doi.org/10.12989/sem.2006.24.2.181
  36. Zeman, J. and Sejnoha, M. (2001), "Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix", J. Mech. Phys. Solids, 49(1), 69-90 https://doi.org/10.1016/S0022-5096(00)00027-2
  37. Zeman, J. and Sejnoha, M. (2007), "From random microstructures to representative volume elements", Model. Simul. Mater. Sci., 15(4), S325-S335 https://doi.org/10.1088/0965-0393/15/4/S01
  38. Zeman, J., Novak, J., Sejnoha, M. and Sejnoha, J. (2008), "Pragmatic multi-scale and multi-physics analysis of Charles Bridge in Prague", Eng. Struct., accepted for publication, http://dx.doi.org/10.1016/j.engstruct.2008.05.012

피인용 문헌

  1. Failure surface of quasi-periodic masonry by means of Statistically Equivalent Periodic Unit Cell approach 2017, https://doi.org/10.1007/s11012-017-0771-5
  2. Homogenized and Heterogeneous Limit Analysis Model for Pushover Analysis of Ancient Masonry Walls with Irregular Texture vol.7, pp.3, 2013, https://doi.org/10.1080/15583058.2011.640737
  3. A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded vol.88, pp.11-12, 2010, https://doi.org/10.1016/j.compstruc.2010.02.009
  4. Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM vol.108, 2016, https://doi.org/10.1016/j.conbuildmat.2016.01.025
  5. Homogenization methods for interface modeling in damaged masonry vol.46, pp.1, 2012, https://doi.org/10.1016/j.advengsoft.2010.09.009
  6. Homogenization of coupled heat and moisture transport in masonry structures including interfaces vol.219, pp.13, 2013, https://doi.org/10.1016/j.amc.2011.02.050
  7. Strength domain of non-periodic masonry by homogenization in generalized plane state vol.30, pp.2, 2011, https://doi.org/10.1016/j.euromechsol.2010.10.009
  8. A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs vol.223-224, 2012, https://doi.org/10.1016/j.cma.2012.02.018
  9. Simplified out-of-plane modelling of three-leaf masonry walls accounting for the material texture vol.40, 2013, https://doi.org/10.1016/j.conbuildmat.2012.09.090
  10. Characterization of the response of quasi-periodic masonry: Geometrical investigation, homogenization and application to the Guimarães castle, Portugal vol.56, 2013, https://doi.org/10.1016/j.engstruct.2013.05.040
  11. Meso-scale analysis of FRC using a two-step homogenization approach vol.89, pp.11-12, 2011, https://doi.org/10.1016/j.compstruc.2011.02.006
  12. Kinematic FE homogenized limit analysis model for masonry curved structures strengthened by near surface mounted FRP bars vol.93, pp.1, 2010, https://doi.org/10.1016/j.compstruct.2010.05.013
  13. Physical and mechanical properties of the repaired sandstone ashlars in the facing masonry of the Charles Bridge in Prague (Czech Republic) and an analytical study for the causes of its rapid decay vol.63, pp.7-8, 2011, https://doi.org/10.1007/s12665-010-0819-5
  14. Micro-mechanical finite element modeling of diagonal compression test for historical stone masonry structure vol.112, 2017, https://doi.org/10.1016/j.ijsolstr.2017.02.014
  15. Contribution of clayey–calcareous silicite to the mechanical properties of structural mortared rubble masonry of the medieval Charles Bridge in Prague (Czech Republic) vol.115, pp.3-4, 2010, https://doi.org/10.1016/j.enggeo.2010.06.009
  16. FE homogenized limit analysis model for masonry strengthened by near surface bed joint FRP bars vol.92, pp.2, 2010, https://doi.org/10.1016/j.compstruct.2009.08.004
  17. Evaluation of a Statistically Equivalent Periodic Unit Cell for a quasi-periodic masonry vol.50, pp.25-26, 2013, https://doi.org/10.1016/j.ijsolstr.2013.08.027
  18. Homogenized limit analysis of masonry structures with random input properties: polynomial Response Surface approximation and Monte Carlo simulations vol.34, pp.4, 2008, https://doi.org/10.12989/sem.2010.34.4.417
  19. Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion vol.14, pp.5, 2008, https://doi.org/10.12989/was.2011.14.5.435
  20. Masonry elastic characteristics assessment by thermographic images vol.54, pp.9, 2008, https://doi.org/10.1007/s11012-019-00982-9
  21. Vulnerability and seismic improvement of architectural heritage: the case of Palazzo Murena vol.18, pp.3, 2020, https://doi.org/10.12989/eas.2020.18.3.321
  22. Numerical homogenization‐based seismic assessment of an English‐bond masonry prototype: Structural level application vol.49, pp.9, 2008, https://doi.org/10.1002/eqe.3267
  23. Elastic Properties Estimation of Masonry Walls through the Propagation of Elastic Waves: An Experimental Investigation vol.11, pp.19, 2008, https://doi.org/10.3390/app11199091
  24. A FE-Based Macro-Element for the Assessment of Masonry Structures: Linear Static, Vibration, and Non-Linear Cyclic Analyses vol.12, pp.3, 2008, https://doi.org/10.3390/app12031248