DOI QR코드

DOI QR Code

Study of two dimensional visco-elastic problems in generalized thermoelastic medium with heat source

  • Received : 2006.12.22
  • Accepted : 2008.06.17
  • Published : 2008.08.20

Abstract

In this paper, a thermo-viscoelastic problem in an infinite isotropic medium in two dimensions in the presence of a point heat source is considered. The fundamental equations of the problems of generalized thermoelasticity including heat sources in a thermo-viscoelastic media have been derived in the form of a vector matrix differential equation in the Laplace-Fourier transform domain for a two dimensional problem. These equations have been solved by the eigenvalue approach. The results have been compared to those available in the existing literature. The graphs have been drawn for different cases.

Keywords

References

  1. Ackerman, C.C. and Guyer, R.A.(1968), "Temperature pulses in dialectic solids", Annal. Phys., 50, 128-185 https://doi.org/10.1016/0003-4916(68)90320-5
  2. Ackerman, C.C. and Overton, Jr., W.C. (1966), "Temperature dependence of heat pulse propagation in sapphire", Phys. Rev. Lett., 17, 868-871 https://doi.org/10.1103/PhysRevLett.17.868
  3. Agarwal, V.K. (1978), "On surface waves in generalized thermo-elasticity", J. Elasticity, 8, 171-177 https://doi.org/10.1007/BF00052480
  4. Bahar, L.Y. and Hetnarshki, R.B. (1978), "State space approach to thermoelasticity", J. Therm. Stresses, 1, 135-145 https://doi.org/10.1080/01495737808926936
  5. Baksi, A. and Bera, R.K. (2005), "Eigenfunction expansion method for the solution of magneto-thermoelastic problems with thermal relaxation and heat source in three dimensions", Math. Comput. Model., 42, 533-552 https://doi.org/10.1016/j.mcm.2005.01.032
  6. Baksi, A. and Bera, R.K. (2005), "Eigenfunction expansion method for the solution of magneto-thermoelastic problems with thermal relaxation and heat source in two dimensions", Math. Comput. Model., 41, issue 6/7
  7. Baksi, A., Bera, R.K. and Debnath, L. (2004), "Eigenvalue approach to study the effect of rotation and relaxation time in two dimensional problem of generalized thermoelasticity", Int. J. Eng. Sci., 42, 1573-1585 https://doi.org/10.1016/j.ijengsci.2004.03.003
  8. Bellman, R., Kalaba, R.E. and Lockett, Jo.Ann. (1966), "Numerical inversion of the Laplace transform", Amer., Elsevier Pub. Co., New York
  9. Bentman, C.C.B., Fairbank, H.A. and Gayer, R.A. (1966), "Second sound in solid Helium", Phys. Rev. Lett., 16, 789-791 https://doi.org/10.1103/PhysRevLett.16.789
  10. Bhattacharyya, R.K. (1986), "On wave propagation in random magneto-thermo-visco-elastic medium", Indian J. Pure Ap. Mat., 17(5), 705-725
  11. Chandrasekharaiah, D.S. (1986), "Thermoelasticity with second sound: A review", Appl. Mech Rev., 39(3)
  12. Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51(12), part 1
  13. Chow, P.L. (1973), "Thermoelastic wave propagation in a random medium and some related problems", Int. J. Eng. Sci., 11, 953-965 https://doi.org/10.1016/0020-7225(73)90010-4
  14. Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigenvalue approach to generalized thermoelasticity", Indian J. Pure Ap. Mat., 28(12), 1573-1594
  15. Ezzat, M.A. and EI-Karamany, A.S. (2002), "Magnetothermoelasticity with thermal relaxation in a conducting medium with variable electrical and thermal conductivity", J. Therm. Stresses, 25, 859-875 https://doi.org/10.1080/01495730290074450
  16. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. Hetnarski, R.B. (1961), "Coupled one dimensional thermal shock problems for small times", Arch. Mech. Stos., 13, 295-306
  17. Hetnarski, R.B. (1961), "Coupled one dimensional thermal shock problems for small times", Arch. Mech. Stos., 13, 295-306
  18. Hetnarski, R.B. (1961), "Solution of the coupled problems in the form of a series of functions", Arch. Mech. Stos., 16, 919-941
  19. Jackson, H.E. and Walker, C.T. (1971), "Thermal conductivity, second sound and phonon-phonon interactions in NaF", Phys. Rev., B-3, 1428-1439
  20. Kaliski, S. (1965), "Wave equations of thermoelasticity", Bull. Acad. Pol. Sci. Ser. Sci. Tech., 13, 253-260
  21. Lebon, G. (1982), "A generalized theory of thermoelasticity", J. Tech. Phys., 23, 37-46
  22. Librescu, L., Hasanyan, D. and Ambur, D.R. (2004), "Electromagnetically conducting elastic plates in a magnetic field: Modeling and dynamic implications", Int. J. Non-Linear Mech., 39, 723-739 https://doi.org/10.1016/S0020-7462(03)00023-4
  23. Librescu, L., Hasanyan, D., Qin, Z. and Ambur, D.R. (2003), "Nonlinear magneto-thermoelasticity of anistropic plates immersed in a magnetic field", J. Therm. Stresses, 26, Nos.11-12, 1277-1304 https://doi.org/10.1080/714050886
  24. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15, 299-309 https://doi.org/10.1016/0022-5096(67)90024-5
  25. Mukhopadhyay, B. and Bera, R.K. (1992), "Effect of thermal relaxation on Electro-Magnetic-Thermo-Visco-Elastic plane waves in rotating media", Int. J. Eng. Sci., 30(3), 359-369 https://doi.org/10.1016/0020-7225(92)90081-Q
  26. Nayfeh, A. and Nemat-Nasser, S. (1971), "Thermo-elastic waves in solids with thermal relaxation", Acta Mech., 12, 53-69 https://doi.org/10.1007/BF01178389
  27. Nayfeh, A. and Nemat-Nasser, S. (1972), "Electro-magnetio-thermo-elastic plane waves in solids with thermal relaxation", J. Appl. Mech., 39, 108-113 https://doi.org/10.1115/1.3422596
  28. Norhood, F.R. and Warren, W.E. (1969), "Wave propagation in the generalized dynamical theory of elasticity", Quart. J. Mech. Appl. Math., 22, 283-290 https://doi.org/10.1093/qjmam/22.3.283
  29. Roy Choudhuri, S.K. (1985), "Effect of rotation and relaxation times on plane waves in generalized thermoelasticity", J. Elasticity, 15, 59-68 https://doi.org/10.1007/BF00041305
  30. Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Maths., 31, 115-125 https://doi.org/10.1090/qam/99708
  31. Sinha, M. and Bera, R.K. (2003), "Eigenvalue approach to study the effect of rotation and relaxation time in generalized thermoelasticity", Comput. Math. Appl., 46, 783-792 https://doi.org/10.1016/S0898-1221(03)90141-6
  32. Suhubi, E.S. (1975), Thermoelastic solids, In Continum Physics, Volume II(Edited by A.C. Eringen), 191-199, Academic Press, New York
  33. Taylor, B., Marris, H.J. and Elbaum, C. (1969), "Phonon focusing in solids", Phys. Rev. Lett., 23, 416-419 https://doi.org/10.1103/PhysRevLett.23.416
  34. von Gutfeld, R.J. and Nethercot, Jr., A.H. (1966), "Temperature dependence of heat pulse propagation in sapphire", Phys. Rev. Lett., 17, 686-871

Cited by

  1. Vibration analysis of wave motion in micropolar thermoviscoelastic plate vol.39, pp.6, 2008, https://doi.org/10.12989/sem.2011.39.6.861
  2. A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model vol.63, pp.1, 2017, https://doi.org/10.12989/sem.2017.63.1.089
  3. Thermoviscoelastic orthotropic solid cylinder with variable thermal conductivity subjected to temperature pulse heating vol.13, pp.2, 2008, https://doi.org/10.12989/eas.2017.13.2.201
  4. Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium vol.68, pp.2, 2018, https://doi.org/10.12989/sem.2018.68.2.215