DOI QR코드

DOI QR Code

Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions

  • Received : 2007.11.21
  • Accepted : 2008.06.09
  • Published : 2008.08.20

Abstract

In this paper, we present a quadratic element model based on non-conforming displacement modes and modified shape functions. This new and refined 8-node hybrid stress plane element consists of two additional non-conforming modes that are added to the translational degree of freedom to improve the behavior of a membrane component. Further, the modification of the shape functions through quadratic polynomials in x-y coordinates enables retaining reasonable accuracy even when the element becomes considerably distorted. To establish its accuracy and efficiency, the element is compared with existing elements and - over a wide range of mesh distortions - it is demonstrated to be exceptionally accurate in predicting displacements and stresses.

Keywords

References

  1. Chun, K.S. and Kassegne, S.K. (2005), "A new efficient 8-node Serendipity element with explicit and assumed strain formulations", Int. J. Comput. Eng. Sci., 6(4), 285-292
  2. Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "Defect-free 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8(2), 207-231 https://doi.org/10.12989/sem.1999.8.2.207
  3. Choi, C.K. and Park, Y.M. (1999), "Quadratic NMS Mindlin-plate-bending element", Int. J. Numer. Meth. Eng., 46, 1273-1289 https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1273::AID-NME754>3.0.CO;2-N
  4. Chen, W. and Cheung, Y.K. (1995), "A robust refined quadrilateral plane element", Int. J. Numer. Meth. Eng., 38, 649-666 https://doi.org/10.1002/nme.1620380409
  5. Di, S. and Ramm, E. (1994), "On alternative hybrid stress 2D and 3D elements", Eng. Comput., 11, 49-68 https://doi.org/10.1108/02644409410799155
  6. Feng, W., Hoa, S.V. and Huang, Q. (1997), "Classification of stress modes in assumed stress fields of hybrid finite elements", Int. J. Numer. Meth. Eng., 40, 4313-4339 https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4313::AID-NME259>3.0.CO;2-N
  7. Groenwold, A.A. and Stander, N. (1995), "An efficient 4-node 24 D.O.F. thick shell finite element with 5-point quadrature", Eng. Comput., 12, 723-747 https://doi.org/10.1108/02644409510104686
  8. Geyer, S. and Groenwold, A.A. (2002), "Two hybrid stress membrane finite element families with drilling rotations", Int. J. Numer. Meth. Eng., 53, 583-601 https://doi.org/10.1002/nme.287
  9. Kim, K.D., Lomboy, G.R. and Voyiadjis, G.Z. (2003), "A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom", Int. J. Numer. Meth. Eng., 58, 2177-2200 https://doi.org/10.1002/nme.854
  10. Kikuchi, F., Okabe, M. and Fujio, H. (1999), "Modification of the 8-node serendipity element", Comput. Meth. Appl. Mech. Eng., 179, 91-109 https://doi.org/10.1016/S0045-7825(99)00031-6
  11. MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elem. Anal. D., 1, 3-20 https://doi.org/10.1016/0168-874X(85)90003-4
  12. MacNeal, R.H. and Harder, R.L. (1992), "Eight nodes or nine?", Int. J. Numer. Meth. Eng., 33, 1049-1058 https://doi.org/10.1002/nme.1620330510
  13. Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 2, 1333-1376 https://doi.org/10.2514/3.2546
  14. Pian, T.H.H. and Sumihara, K. (1984), "Rational approach for assumed stress finite elements", Int. J. Numer. Meth. Eng., 20, 1685-1695 https://doi.org/10.1002/nme.1620200911
  15. Pian, T.H.H. and Tong, P. (1986), "Relation between incompatible displacement model and hybrid stress model", Int. J. Numer. Meth. Eng., 22, 173-181 https://doi.org/10.1002/nme.1620220112
  16. Pian, T.H.H. and Wu, C.C. (1988), "A rational approach for choosing stress terms for hybrid finite element formulations", Int. J. Numer. Meth. Eng., 26, 2331-2343 https://doi.org/10.1002/nme.1620261014
  17. Simo, J.C., Fox, D.D. and Rifai, M.S. (1989), "On stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects", Comput. Meth. Appl. Mech. Eng., 73, 53-92 https://doi.org/10.1016/0045-7825(89)90098-4
  18. Sze, K.Y. (1992), "Efficient formulation of robust mixed element using orthogonal stress/strain interpolants and admissible matrix formulation", Int. J. Numer. Meth. Eng., 35, 1-20 https://doi.org/10.1002/nme.1620350102
  19. Taylor, R.L., Beresford, P.J. and Wilson, E.L. (1976), "A nonconforming element for stress analysis", Int. J. Numer. Meth. Eng., 10, 1211-1219 https://doi.org/10.1002/nme.1620100602
  20. Wu, C.C. and Cheung, Y.K. (1995), "On optimization approaches of hybrid stress elements", Finite Elem. Anal. D., 21, 111-128 https://doi.org/10.1016/0168-874X(95)00023-0
  21. Wu, C.C. and Cheung, Y.K. (1996), "Penalty-equilibrating approach and an innovation of 4-noded hybrid stress elements", Commun. Numer. Meth. Eng., 12, 707-717 https://doi.org/10.1002/(SICI)1099-0887(199611)12:11<707::AID-CNM4>3.0.CO;2-K
  22. Wilson, E.L., Taylor, R.L., Doherty, W.P. and Ghaboussi, J.(1973), "Incompatible displacement models", Numer. Comput. Meth. Struct. Mech. (Ed Fenves et al.), Academic Press. New York
  23. Yeo, S. and Lee, B.C. (1997), "New stress assumption for hybrid stress elements and refined four-node plane and eight-node brick elements", Int. J. Numer. Meth. Eng., 40, 2933-2952 https://doi.org/10.1002/(SICI)1097-0207(19970830)40:16<2933::AID-NME198>3.0.CO;2-3

Cited by

  1. A Prange–Hellinger–Reissner type finite element formulation for small strain elasto-plasticity vol.317, 2017, https://doi.org/10.1016/j.cma.2016.12.005
  2. A new enhanced assumed strain quadrilateral membrane element with drilling degree of freedom and modified shape functions vol.110, pp.6, 2017, https://doi.org/10.1002/nme.5430
  3. Two Triangular Membrane Elements Based on Strain vol.11, pp.1, 2008, https://doi.org/10.1142/s1758825119500108
  4. An extension of assumed stress finite elements to a general hyperelastic framework vol.6, pp.None, 2019, https://doi.org/10.1186/s40323-019-0133-z