DOI QR코드

DOI QR Code

Frequency analysis of moderately thick uniform isotropic annular plates by discrete singular convolution method

  • Civalek, Omer (Akdeniz University, Faculty of Engineering, Civil Engineering Department, Division of Mechanics) ;
  • Ersoy, Hakan (Akdeniz University, Faculty of Engineering, Mechanical Engineering Department Division of Mechanics)
  • 투고 : 2008.01.08
  • 심사 : 2008.03.02
  • 발행 : 2008.07.10

초록

In the present study, free vibration analysis of thick annular plates is analyzed by discrete singular convolution method. The Mindlin plate theory is employed. The material is isotropic, homogeneous and obeys Hook's law. In this paper, discrete singular convolution method is used for discretization of equations of motion. Axisymmetric frequency values are presented illustrating the effect of radius ratio and thickness to radius ratio of the annular plate. The influence of boundary conditions on the frequency characteristics is also discussed. Comparing results with those in the literature validates the present analysis. It is shown that the obtained results are very accurate by this approach.

키워드

참고문헌

  1. Civalek, O. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Press. Ves. Pip., 83, 1-12
  2. Civalek, O. (2006a), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., 6(4), 353-366 https://doi.org/10.12989/scs.2006.6.4.353
  3. Civalek, O. (2007), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Model., 31, 606-624 https://doi.org/10.1016/j.apm.2005.11.023
  4. Civalek, O. (2007a), "Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach", J. Comput. Appl. Math., 205, 251-271 https://doi.org/10.1016/j.cam.2006.05.001
  5. Civalek, O. (2007b), "Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method", Int. J. Mech. Sci., 49, 752-765 https://doi.org/10.1016/j.ijmecsci.2006.10.002
  6. Civalek, O. (2007c), "A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution", Thin Wall Struct., 45, 692-698 https://doi.org/10.1016/j.tws.2007.05.004
  7. Civalek, O. (2007d), "Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach", Finite Elem. Anal. Des., 43, 1013-1022 https://doi.org/10.1016/j.finel.2007.06.014
  8. Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Eng., 24, 169-181 https://doi.org/10.1002/cnm.961
  9. Civalek, O. (2007e), "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Struct. Eng. Mech., 25(1), 127-130 https://doi.org/10.12989/sem.2007.25.1.127
  10. Han, J.-B. and Liew, K.M. (1999), "Axisymmetric free vibration of thick annular plates", Int. J. Mech. Sci., 41, 1089-1109 https://doi.org/10.1016/S0020-7403(98)00057-5
  11. Han, J.-B. and Liew, K.M. (1998), "Analysis of annular Reissner/Mindlin plates using differential quadrature method", Int. J. Mech. Sci., 40(7), 651-661 https://doi.org/10.1016/S0020-7403(97)00087-8
  12. Hou, Y., Wei, G.W. and Xiang, Y. (2005), "DSC-Ritz method for the free vibration analysis of Mindlin plates", Int. J. Numer. Meth. Eng., 62, 262-288 https://doi.org/10.1002/nme.1186
  13. Irie, T., Yamada, G. and Takagi, K. (1982), "Natural frequencies of thick annular plates", J. Appl. Mech., 49, 633-638 https://doi.org/10.1115/1.3162539
  14. Ng, C.H.W., Zhao, Y.B. and Wei, G.W. (2004), "Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates", Comput. Meth. Appl. Mech. Eng., 193, 2483-2506 https://doi.org/10.1016/j.cma.2004.01.013
  15. Leissa, A.W. (1987), "Recent research in plate vibrations: 1981-1985: Part I, classical theory", Shock Vib. Digest, 19(2), 11-18
  16. Liew, K.M. and Liu, F.-L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356 https://doi.org/10.1006/jsvi.1999.2623
  17. Liew, K.M., Kitipornchai, S. and Xiang, Y. (1995), "Vibration of annular sector Mindlin plates with internal radial line and circumferential arc supports", J. Sound Vib., 183(3), 401-409 https://doi.org/10.1006/jsvi.1995.0262
  18. Liew, K.M. and Yang, B. (2000), "Elasticity solution for free vibrations of annular plates from three-dimensional analysis", Int. J. Solids Struct., 37, 7689-7702 https://doi.org/10.1016/S0020-7683(99)00306-6
  19. Liew, K.M. and Lam, K.Y. (1993), "On the use of 2-D orthogonal polynomials in the Rayleigh-Ritz method for flexural vibration of annular sector plates of arbitrary shape", Int. J. Mech. Sci., 35, 129-139 https://doi.org/10.1016/0020-7403(93)90071-2
  20. Lim, G.T. and Wang, C.M. (2000), "Bending of annular sectorial Mindlin plates using Kirchhoff results", Eur. J. Mech. A/Solids, 19, 1041-1057 https://doi.org/10.1016/S0997-7538(00)01112-8
  21. Lim, C.W., Li, Z.R., Xiang, Y., Wei, G.W. and Wang, C.M. (2005), "On the missing modes when using the exact frequency relationship between Kirchhoff and Mindlin plates", Adv. Vib. Eng., 4, 221-248
  22. Lim, C.W., Li, Z.R. and Wei, G.W. (2005a), "DSC-Ritz method for high-mode frequency analysis of thick shallow shells", Int. J. Numer. Meth. Eng., 62, 205-232 https://doi.org/10.1002/nme.1179
  23. Liu, G.R. and Chen, X.L. (2001), "A mesh free method for static and free vibration analyses of thin plates of complicated shape", J. Sound Vib., 241(5), 839-855
  24. Liu, T., Kitipornchai, S. and Wang, C.M. (2001), "Bending of linearly tapered annular Mindlin plates", Int. J. Mech. Sci., 43, 265-278 https://doi.org/10.1016/S0020-7403(99)00115-0
  25. Wan, D.C., Zhou, Y.C. and Wei, G.W. (2002), "Numerical solution of unsteady incompressible flows by the discrete singular convolution", Int. J Numer. Method. Fluids, 38, 789-810 https://doi.org/10.1002/fld.253
  26. Wang, X. and Wang, Y. (2004), "Re-analysis of free vibration of annular plates by the new version of differential quadrature method", J. Sound Vib., 278(3), 685-689 https://doi.org/10.1016/j.jsv.2003.12.008
  27. Wang, X., Yang, J. and Xiao, J. (1995), "On free vibration analysis of circular annular plates with non-uniform thickness by the differential quadrature method", J. Sound Vib., 194, 547-551
  28. Wei, G.W. (1999), "Discrete singular convolution for the solution of the Fokker-Planck equations", J. Chem. Phys., 110, 8930-8942 https://doi.org/10.1063/1.478812
  29. Wei, G.W. (2000), "Solving quantum eigenvalue problems by discrete singular convolution", J. Phys. B: At. Mol. Opt. Phys., 33, 343-352 https://doi.org/10.1088/0953-4075/33/3/304
  30. Wei, G.W. (2000a), "Discrete singular convolution for the sine-Gordon equation", Physica D, 137, 247-259 https://doi.org/10.1016/S0167-2789(99)00186-4
  31. Wei, G.W. (2000b), "Wavelets generated by using discrete singular convolution kernels", J. Phys. A: Math. Gen. 33, 8577-8596 https://doi.org/10.1088/0305-4470/33/47/317
  32. Wei, G.W. (2001), "A new algorithm for solving some mechanical problems", Comput. Meth. Appl. Mech. Eng., 190, 2017-2030 https://doi.org/10.1016/S0045-7825(00)00219-X
  33. Wei, G.W. (2001a), "Vibration analysis by discrete singular convolution", J. Sound Vib., 244, 535-553 https://doi.org/10.1006/jsvi.2000.3507
  34. Wei, G.W. (2001b), "Discrete singular convolution for beam analysis", Eng. Struct., 23, 1045-1053 https://doi.org/10.1016/S0141-0296(01)00016-5
  35. Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm", Int. J. Numer. Meth. Eng., 55, 913-946 https://doi.org/10.1002/nme.526
  36. Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002a), "A novel approach for the analysis of high-frequency vibrations", J. Sound Vib., 257, 207-246 https://doi.org/10.1006/jsvi.2002.5055
  37. Wei, G.W., Zhao, Y.B. and Xiang, Y. (2001), "The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution", Int. J. Mech. Sci., 43, 1731-1746 https://doi.org/10.1016/S0020-7403(01)00021-2
  38. Wei, G.W. and Gu, Y. (2002), "Conjugated filter approach for solving Burger's equation", J. Comput. Appl. Math., 149, 439-456 https://doi.org/10.1016/S0377-0427(02)00488-0
  39. Wu, T.Y., Wang, Y.Y. and Liu, G.R. (2002), "Free vibration analysis of circular plates using generalized differential quadrature rule", Comput. Meth. Appl. Mech. Eng., 191(46), 5365-5380 https://doi.org/10.1016/S0045-7825(02)00463-2
  40. Wu, T.Y. and Liu, G.R. (2001), "Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule", Int. J. Solids Struct., 38(44-45), 7967-7980 https://doi.org/10.1016/S0020-7683(01)00077-4
  41. Xiang, Y., Liew, K.M. and Kitipornchai, S. (1993), "Transverse vibration of thick annular sector plates", J. Eng. Mech., ASCE, 93, 1579-1599
  42. Xiang, Y. and Zhang, L. (2005), "Free vibration analysis of stepped circular Mindlin plates", J. Sound Vib., 280(3-5), 633-655 https://doi.org/10.1016/j.jsv.2003.12.017
  43. Xiang, Y., Zhao, Y.B. and Wei, G.W. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: Applications", Int. J Numer. Method. Eng., 55, 947-971 https://doi.org/10.1002/nme.527
  44. Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), "Discrete singular convolution for the prediction of high frequency vibration of plates", Int. J. Solids Struct., 39, 65-88 https://doi.org/10.1016/S0020-7683(01)00183-4
  45. Zhao, Y.B. and Wei G.W. (2002), "DSC analysis of rectangular plates with non-uniform boundary conditions", J. Sound Vib., 255(2), 203-228 https://doi.org/10.1006/jsvi.2001.4150
  46. Zhao, S., Wei, G.W. and Xiang, Y. (2005), "DSC analysis of free-edged beams by an iteratively matched boundary method", J. Sound Vib., 284, 487-493 https://doi.org/10.1016/j.jsv.2004.08.037
  47. Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002a), "Plate vibration under irregular internal supports", Int. J. Solids Struct., 39, 1361-1383 https://doi.org/10.1016/S0020-7683(01)00241-4
  48. Zhou Y.C. and Wei, G.W. (2006), "On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method", J. Comput. Phys., 219, 228-246 https://doi.org/10.1016/j.jcp.2006.03.027
  49. Zhou, D., Au, F.T.K., Cheung, Y.K. and Lo, S.H. (2003), "Three-dimensional vibration analysis of circular annular plates via the Chebyshev-Ritz method", Int. J. Solids Struct., 40, 3089-3105 https://doi.org/10.1016/S0020-7683(03)00114-8
  50. Zhou, D., Au, F.T.K., Cheung, Y.K. and Lo, S.H. (2006), "Effect of built-in edges on 3-D vibrational characteristics of thick circular plates", Int. J. Solids Struct., 43(7-8), 1960-1978 https://doi.org/10.1016/j.ijsolstr.2005.05.007
  51. Zhou, D., Lo, S.H., Au, F.T.K. and Cheung, Y.K. (2006a), "Three-dimensional free vibration of thick circular plates on Pasternak foundation", J. Sound Vib., 292(3-5), 726-741 https://doi.org/10.1016/j.jsv.2005.08.028

피인용 문헌

  1. Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory vol.79, pp.3, 2009, https://doi.org/10.1002/nme.2553
  2. A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2008, https://doi.org/10.1007/s11831-019-09365-5
  3. Blast loaded plates: Simplified analytical nonlinear dynamic approach vol.28, pp.None, 2020, https://doi.org/10.1016/j.istruc.2020.10.043