DOI QR코드

DOI QR Code

Harmony search algorithm for optimum design of steel frame structures: A comparative study with other optimization methods

  • Degertekin, S.O. (Department of Civil Engineering, Dicle University)
  • 투고 : 2007.04.11
  • 심사 : 2007.09.01
  • 발행 : 2008.07.10

초록

In this article, a harmony search algorithm is presented for optimum design of steel frame structures. Harmony search is a meta-heuristic search method which has been developed recently. It is based on the analogy between the performance process of natural music and searching for solutions of optimization problems. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) and AISC Allowable Stress Design (ASD) specifications, maximum (lateral displacement) and interstorey drift constraints, and also size constraint for columns were imposed on frames. The results of harmony search algorithm were compared to those of the other optimization algorithms such as genetic algorithm, optimality criterion and simulated annealing for two planar and two space frame structures taken from the literature. The comparisons showed that the harmony search algorithm yielded lighter designs for the design examples presented.

키워드

참고문헌

  1. Ad Hoc Committee on Serviceability Research (1986), "Structural serviceability: A critical appraisal and research needs", J. Struct. Eng., ASCE, 112(12), 2646-2664 https://doi.org/10.1061/(ASCE)0733-9445(1986)112:12(2646)
  2. American Institute of Steel Construction (1989), Manual of steel construction: Allowable Stress Design, Chicago, IIIionis
  3. American Institute of Steel Construction (1995), Manual of steel construction: Load and Resistance Factor Design. Chicago, Illionis
  4. Arora, J.S. (1980), "Analysis of optimality criteria and gradient projection methods for optimal structural design", Comp. Meth. Appl. Mech. Eng., 23, 185-213 https://doi.org/10.1016/0045-7825(80)90093-6
  5. Balling, R.J. (1991), "Optimal steel frame design by simulated annealing", J. Struct. Eng., ASCE, 117, 1780- 1795 https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1780)
  6. Barski, M. (2006), "Optimal design of shells against buckling subjected to combined loadings", Struct. Multidiscip. O., 31, 211-222 https://doi.org/10.1007/s00158-005-0576-3
  7. Bennage, W.A. and Dhingra, A.K. (1995), "Single and multiobjective structural optimization in discretecontinuous variables using simulated annealing", Int. J. Numer. Meth. Eng., 38, 2753-2773 https://doi.org/10.1002/nme.1620381606
  8. Camp, C., Pezeshk, S. and Cao, G. (1998), "Optimized design of two-dimensional structures using a genetic algorithm", J. Struct. Eng., ASCE, 124, 551-559 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(551)
  9. Ceranic, B., Fryer, C. and Baines, R.W. (2001), "An application of simulated annealing to the optimum design of concrete retaining structures", Comput. Struct., 79, 1569-1581 https://doi.org/10.1016/S0045-7949(01)00037-2
  10. Chan, C.M. (1992), "An optimality criteria algorithm for tall steel building design using commercial standard sections", Struct Optimiz., 5, 26-29 https://doi.org/10.1007/BF01744692
  11. Chen, T.Y., Su, J.J. (2002), "Efficiency improvement of simulated annealing in optimal structural designs", Adv. Eng. Softw., 33, 675-680 https://doi.org/10.1016/S0965-9978(02)00058-3
  12. Degertekin, S.O. (2007), "A comparison of simulated annealing and genetic algorithm for optimum design of non-linear steel space frames", Struct. Multidiscip. O., 34, 347-359 https://doi.org/10.1007/s00158-007-0096-4
  13. Dhingra, A.K. and Bennage, W.A. (1995), "Topological optimization truss structures using simulated annealing", Eng. Optimiz., 24, 239-259 https://doi.org/10.1080/03052159508941192
  14. Dumonteil, P. (1992), "Simple equations for effective length factors", Eng. J., AISC, 3, 111-115
  15. Elperin, T. (1988), "Monte carlo structural optimization in discrete variables with annealing algorithm", Int. J. Numer. Meth. Eng., 26, 815-821 https://doi.org/10.1002/nme.1620260405
  16. Geem, Z.W, Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76, 60-68 https://doi.org/10.1177/003754970107600201
  17. Geem, Z.W. (2006), "Optimal cost design of water distribution networks using harmony search", Eng. Optimiz., 38, 259-280 https://doi.org/10.1080/03052150500467430
  18. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Reading MA: Addisson-Wesley
  19. Hasancebi, O. and Erbatur, F. (2002), "Layout optimisation of trusses using simulated annealing", Adv. Eng. Softw., 33, 681-696 https://doi.org/10.1016/S0965-9978(02)00049-2
  20. Hayalioglu, M.S. (2000), "Optimum design of geometrically non-linear elastic-plastic steel frames via genetic algorithm", Comp. Struct., 77, 527-538 https://doi.org/10.1016/S0045-7949(99)00221-7
  21. Hayalioglu, M.S. (2001), "Optimum load and resistance factor design of steel space frames using genetic algorithm", Struct. Multidiscip. O., 21, 292-299 https://doi.org/10.1007/s001580100106
  22. Hayalioglu, M.S. and Degertekin, S.O. (2004), "Design of non-linear steel frames for stress and displacement constraints with semi-rigid connections via genetic optimization", Struct. Multidiscip. O., 27, 259-271 https://doi.org/10.1007/s00158-003-0357-9
  23. Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83, 849-1863
  24. Huang, M.W. and Arora, J.S. (1997), "Optimal design steel structures using standard sections", Struct. Optimiz., 14, 24-35 https://doi.org/10.1007/BF01197555
  25. Kameshki, E.S. and Saka, M.P. (2001), "Optimum design of nonlinear steel frames with semi rigid connections using a genetic algorithms", Comput. Struct., 79, 1593-1604 https://doi.org/10.1016/S0045-7949(01)00035-9
  26. Kameski, E.S. and Saka, M.P. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semirigid connections", J. Constr. Steel Res., 59, 109-134 https://doi.org/10.1016/S0143-974X(02)00021-4
  27. Kaveh, A. and Kalatraji V. (2004), "Size/geometry optimization of trusses by the force method and genetic algorithm", Z. Angew. Math. Mech., 84, 347-357 https://doi.org/10.1002/zamm.200310106
  28. Kaveh, A. and Kalatraji, V. (2002), "Genetic algorithm for discrete-sizing optimal design of trusses using the force method", Int. J. Numer. Meth. Eng., 55, 55-72 https://doi.org/10.1002/nme.483
  29. Kaveh, A. and Rahami, H. (2006), "Nonlinear analysis and optimal design of structures via force method and genetic algorithm", Comput. Struct., 84, 770-778 https://doi.org/10.1016/j.compstruc.2006.02.004
  30. Khot, N.S., Venkayya, V.B. and Berke, L. (1976), "Optimum structural design with stability constraints", Int. J. Numer. Meth. Eng., 10, 1097-1114 https://doi.org/10.1002/nme.1620100510
  31. Kim, J.H., Geem, Z.W. and Kim, E.S. (2001), "Parameter estimation of the nonlinear muskingum model using harmony search", J. Am. Water. Resour. As., 37, 1131-1138 https://doi.org/10.1111/j.1752-1688.2001.tb03627.x
  32. Kincaid, R.K. (1992), "Minimizing distortion and internal forces in truss structures via simulated annealing", Struct. Optimiz., 4, 55-61 https://doi.org/10.1007/BF01894081
  33. Kincaid, R.K. (1993), "Minimizing distortion in truss structures: A comparison of simulated annealing and tabu search", Struct. Optimiz., 5, 217-224 https://doi.org/10.1007/BF01743582
  34. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220, 671-680 https://doi.org/10.1126/science.220.4598.671
  35. Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-798 https://doi.org/10.1016/j.compstruc.2004.01.002
  36. Lee, K.S. and Geem, Z.W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comp. Meth. Appl. Mech. Eng., 194, 3902-3933 https://doi.org/10.1016/j.cma.2004.09.007
  37. Lee, K.S., Geem, Z.W., Lee, S.H. and Bae, K.W. (2005), "The harmony search heuristic algorithm for discrete structural optimization", Eng. Optimiz., 37, 663-684 https://doi.org/10.1080/03052150500211895
  38. Lin, C.C. and Liu, I.W. (1989), "Optimal design based on optimality criterion for frame structures including buckling constraints", Comput. Struct., 31, 535-544 https://doi.org/10.1016/0045-7949(89)90330-1
  39. Manoharan, S. and Shanmuganathan, S. (1999), "A comparison of search mechanisms for structural optimization", Comput. Struct., 73, 363-372 https://doi.org/10.1016/S0045-7949(98)00287-9
  40. Paik, K., Jeong, J.H. and Kim, J.H. (2001), "Use of a harmony search for optimal design of coffer dam drainage pipes", J. Korean Soc. Civ. Eng., 21, 119-128
  41. Pantelidis, C.P. and Tzan, S.R. (2000), "Modified iterated annealing algorithm for structural synthesis", Adv. Eng. Softw., 31, 391-400 https://doi.org/10.1016/S0965-9978(00)00007-7
  42. Park, H.S. and Sung, C.W. (2002), "Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers", Comput. Struct., 80, 1305-1316 https://doi.org/10.1016/S0045-7949(02)00073-1
  43. Pezeshk, S., Camp, C.V. and Chen D. (2000), "Design of nonlinear framed structures using genetic optimization", J. Struct. Eng., ASCE, 126, 382-388 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
  44. Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng., ASCE, 118, 1233-1250 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
  45. Rao, A.R.M. and Arvind, N. (2007), "Optimal stacking sequence design of laminate composite structures using tabu search embedded simulated annealing", Struct. Eng. Mech., 25(2), 239-268 https://doi.org/10.12989/sem.2007.25.2.239
  46. Rozvany, G.I.N. and Zhou, M. (1991), "A note on truss design for stress and displacement constraints by optimality criteria methods", Struct. Optimiz., 3, 45-50 https://doi.org/10.1007/BF01743488
  47. Saka, M.P. and Hayalioglu, M.S. (1991), "Optimum design of geometrically nonlinear elastic-plastic steel frames", Comput. Struct., 38, 329-344 https://doi.org/10.1016/0045-7949(91)90110-8
  48. Shrestha, S.M. and Ghaboussi, J. (1998), "Evolution of optimum structural shapes using genetic algorithm", J. Struct. Eng., ASCE, 124, 1331-1338 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1331)
  49. Soegiarso, R. and Adeli, H. (1997), "Optimum load and resistance factor design of steel space-frame structures", J Struct Eng., ASCE, 123, 185-192
  50. Tabak, E.I. and Wright, P.M. (1981), "Optimality criteria method for building frames", J. Struct. Div., ASCE, 107, 1327-1342
  51. Topping, B.H.V., Khan. A.I. and de Barros Leite, J.P. (1993), "Topological design of truss structures using simulated annealing", Neural Networks and Combinatorial Optimization in Civil and Structural Engineering, Edinburgh, U.K., 151-165
  52. Uniform Building Code (1997), International Conference of Building Officials. Whittier, California
  53. van Laarhoven, P.J.M. and Aarts, E.H.L. (1987), Simulated Annealing: Theory and Applications. D. Riedel Publishing Company: Dordrecht

피인용 문헌

  1. Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases vol.42, pp.5, 2010, https://doi.org/10.1007/s00158-010-0533-7
  2. Optimization and Parametric Modelling to Support Conceptual Structural Design vol.9, pp.2, 2011, https://doi.org/10.1260/1478-0771.9.2.151
  3. Effects of initial memory and identical harmony in global optimization using harmony search algorithm vol.218, pp.22, 2012, https://doi.org/10.1016/j.amc.2012.04.070
  4. Optimum design of axially symmetric cylindrical reinforced concrete walls vol.51, pp.3, 2014, https://doi.org/10.12989/sem.2014.51.3.361
  5. Damage detection under ambient vibration by harmony search algorithm vol.39, pp.10, 2012, https://doi.org/10.1016/j.eswa.2012.02.147
  6. Feedforward neural network training using intelligent global harmony search vol.3, pp.2, 2012, https://doi.org/10.1007/s12530-012-9054-5
  7. Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms vol.39, pp.10, 2012, https://doi.org/10.1016/j.eswa.2012.02.113
  8. An intelligent global harmony search approach to continuous optimization problems vol.232, 2014, https://doi.org/10.1016/j.amc.2014.01.086
  9. Global best harmony search algorithm with control parameters co-evolution based on PSO and its application to constrained optimal problems vol.219, pp.19, 2013, https://doi.org/10.1016/j.amc.2013.03.111
  10. Proposed Strategy for the Application of the Modified Harmony Search Algorithm to Code-Based Selection and Scaling of Ground Motions vol.28, pp.6, 2014, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000261
  11. Overview of Harmony Search algorithm and its applications in Civil Engineering vol.7, pp.1, 2014, https://doi.org/10.1007/s12065-013-0100-4
  12. Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions vol.147, 2015, https://doi.org/10.1016/j.compstruc.2014.10.003
  13. Multi-objective optimisation of retaining walls using hybrid adaptive gravitational search algorithm vol.31, pp.3, 2014, https://doi.org/10.1080/10286608.2013.853746
  14. Harmony Search Method for Multimodal Size, Shape, and Topology Optimization of Structural Frameworks vol.137, pp.11, 2011, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000378
  15. Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm vol.9, pp.6, 2009, https://doi.org/10.12989/scs.2009.9.6.535
  16. Multiobjective structural optimization of frameworks using enumerative topology vol.173, 2016, https://doi.org/10.1016/j.compstruc.2016.05.020
  17. Design-driven harmony search (DDHS) in steel frame optimization vol.59, 2014, https://doi.org/10.1016/j.engstruct.2013.12.003
  18. Improved harmony search algorithms for sizing optimization of truss structures vol.92-93, 2012, https://doi.org/10.1016/j.compstruc.2011.10.022
  19. A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames vol.15, pp.1, 2015, https://doi.org/10.1007/s13296-015-3006-4
  20. Truss optimization with dynamic constraints using UECBO vol.1, pp.2, 2016, https://doi.org/10.12989/acd.2016.1.2.119
  21. Sizing truss structures using teaching-learning-based optimization vol.119, 2013, https://doi.org/10.1016/j.compstruc.2012.12.011
  22. Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames vol.50, pp.3, 2014, https://doi.org/10.12989/sem.2014.50.3.323
  23. Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical Reinforced Concrete Walls vol.164, pp.1, 2015, https://doi.org/10.1007/s10957-014-0562-2
  24. Recognition-based online Kurdish character recognition using hidden Markov model and harmony search vol.20, pp.2, 2017, https://doi.org/10.1016/j.jestch.2016.11.016
  25. A self-adaptive global best harmony search algorithm for continuous optimization problems vol.216, pp.3, 2010, https://doi.org/10.1016/j.amc.2010.01.088
  26. Multi-objective optimization of foundation using global-local gravitational search algorithm vol.50, pp.3, 2014, https://doi.org/10.12989/sem.2014.50.3.257
  27. The Great Salmon Run Metaheuristic for Robust Shape and Size Design of Truss Structures with Dynamic Constraints vol.5, pp.2, 2014, https://doi.org/10.4018/ijamc.2014040104
  28. Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm vol.12, pp.6, 2012, https://doi.org/10.12989/scs.2012.12.6.505
  29. A Method to Improve the Seismic Performance of Steel Moment Resisting Frames Based on Eigenfrequency Optimization vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8385342
  30. Comparison of three novel hybrid metaheuristic algorithms for structural optimization problems vol.244, pp.None, 2008, https://doi.org/10.1016/j.compstruc.2020.106395