References
- Ad Hoc Committee on Serviceability Research (1986), "Structural serviceability: A critical appraisal and research needs", J. Struct. Eng., ASCE, 112(12), 2646-2664 https://doi.org/10.1061/(ASCE)0733-9445(1986)112:12(2646)
- American Institute of Steel Construction (1989), Manual of steel construction: Allowable Stress Design, Chicago, IIIionis
- American Institute of Steel Construction (1995), Manual of steel construction: Load and Resistance Factor Design. Chicago, Illionis
- Arora, J.S. (1980), "Analysis of optimality criteria and gradient projection methods for optimal structural design", Comp. Meth. Appl. Mech. Eng., 23, 185-213 https://doi.org/10.1016/0045-7825(80)90093-6
- Balling, R.J. (1991), "Optimal steel frame design by simulated annealing", J. Struct. Eng., ASCE, 117, 1780- 1795 https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1780)
- Barski, M. (2006), "Optimal design of shells against buckling subjected to combined loadings", Struct. Multidiscip. O., 31, 211-222 https://doi.org/10.1007/s00158-005-0576-3
- Bennage, W.A. and Dhingra, A.K. (1995), "Single and multiobjective structural optimization in discretecontinuous variables using simulated annealing", Int. J. Numer. Meth. Eng., 38, 2753-2773 https://doi.org/10.1002/nme.1620381606
- Camp, C., Pezeshk, S. and Cao, G. (1998), "Optimized design of two-dimensional structures using a genetic algorithm", J. Struct. Eng., ASCE, 124, 551-559 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(551)
- Ceranic, B., Fryer, C. and Baines, R.W. (2001), "An application of simulated annealing to the optimum design of concrete retaining structures", Comput. Struct., 79, 1569-1581 https://doi.org/10.1016/S0045-7949(01)00037-2
- Chan, C.M. (1992), "An optimality criteria algorithm for tall steel building design using commercial standard sections", Struct Optimiz., 5, 26-29 https://doi.org/10.1007/BF01744692
- Chen, T.Y., Su, J.J. (2002), "Efficiency improvement of simulated annealing in optimal structural designs", Adv. Eng. Softw., 33, 675-680 https://doi.org/10.1016/S0965-9978(02)00058-3
- Degertekin, S.O. (2007), "A comparison of simulated annealing and genetic algorithm for optimum design of non-linear steel space frames", Struct. Multidiscip. O., 34, 347-359 https://doi.org/10.1007/s00158-007-0096-4
- Dhingra, A.K. and Bennage, W.A. (1995), "Topological optimization truss structures using simulated annealing", Eng. Optimiz., 24, 239-259 https://doi.org/10.1080/03052159508941192
- Dumonteil, P. (1992), "Simple equations for effective length factors", Eng. J., AISC, 3, 111-115
- Elperin, T. (1988), "Monte carlo structural optimization in discrete variables with annealing algorithm", Int. J. Numer. Meth. Eng., 26, 815-821 https://doi.org/10.1002/nme.1620260405
- Geem, Z.W, Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76, 60-68 https://doi.org/10.1177/003754970107600201
- Geem, Z.W. (2006), "Optimal cost design of water distribution networks using harmony search", Eng. Optimiz., 38, 259-280 https://doi.org/10.1080/03052150500467430
- Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Reading MA: Addisson-Wesley
- Hasancebi, O. and Erbatur, F. (2002), "Layout optimisation of trusses using simulated annealing", Adv. Eng. Softw., 33, 681-696 https://doi.org/10.1016/S0965-9978(02)00049-2
- Hayalioglu, M.S. (2000), "Optimum design of geometrically non-linear elastic-plastic steel frames via genetic algorithm", Comp. Struct., 77, 527-538 https://doi.org/10.1016/S0045-7949(99)00221-7
- Hayalioglu, M.S. (2001), "Optimum load and resistance factor design of steel space frames using genetic algorithm", Struct. Multidiscip. O., 21, 292-299 https://doi.org/10.1007/s001580100106
- Hayalioglu, M.S. and Degertekin, S.O. (2004), "Design of non-linear steel frames for stress and displacement constraints with semi-rigid connections via genetic optimization", Struct. Multidiscip. O., 27, 259-271 https://doi.org/10.1007/s00158-003-0357-9
- Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83, 849-1863
- Huang, M.W. and Arora, J.S. (1997), "Optimal design steel structures using standard sections", Struct. Optimiz., 14, 24-35 https://doi.org/10.1007/BF01197555
- Kameshki, E.S. and Saka, M.P. (2001), "Optimum design of nonlinear steel frames with semi rigid connections using a genetic algorithms", Comput. Struct., 79, 1593-1604 https://doi.org/10.1016/S0045-7949(01)00035-9
- Kameski, E.S. and Saka, M.P. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semirigid connections", J. Constr. Steel Res., 59, 109-134 https://doi.org/10.1016/S0143-974X(02)00021-4
- Kaveh, A. and Kalatraji V. (2004), "Size/geometry optimization of trusses by the force method and genetic algorithm", Z. Angew. Math. Mech., 84, 347-357 https://doi.org/10.1002/zamm.200310106
- Kaveh, A. and Kalatraji, V. (2002), "Genetic algorithm for discrete-sizing optimal design of trusses using the force method", Int. J. Numer. Meth. Eng., 55, 55-72 https://doi.org/10.1002/nme.483
- Kaveh, A. and Rahami, H. (2006), "Nonlinear analysis and optimal design of structures via force method and genetic algorithm", Comput. Struct., 84, 770-778 https://doi.org/10.1016/j.compstruc.2006.02.004
- Khot, N.S., Venkayya, V.B. and Berke, L. (1976), "Optimum structural design with stability constraints", Int. J. Numer. Meth. Eng., 10, 1097-1114 https://doi.org/10.1002/nme.1620100510
- Kim, J.H., Geem, Z.W. and Kim, E.S. (2001), "Parameter estimation of the nonlinear muskingum model using harmony search", J. Am. Water. Resour. As., 37, 1131-1138 https://doi.org/10.1111/j.1752-1688.2001.tb03627.x
- Kincaid, R.K. (1992), "Minimizing distortion and internal forces in truss structures via simulated annealing", Struct. Optimiz., 4, 55-61 https://doi.org/10.1007/BF01894081
- Kincaid, R.K. (1993), "Minimizing distortion in truss structures: A comparison of simulated annealing and tabu search", Struct. Optimiz., 5, 217-224 https://doi.org/10.1007/BF01743582
- Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220, 671-680 https://doi.org/10.1126/science.220.4598.671
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-798 https://doi.org/10.1016/j.compstruc.2004.01.002
- Lee, K.S. and Geem, Z.W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comp. Meth. Appl. Mech. Eng., 194, 3902-3933 https://doi.org/10.1016/j.cma.2004.09.007
- Lee, K.S., Geem, Z.W., Lee, S.H. and Bae, K.W. (2005), "The harmony search heuristic algorithm for discrete structural optimization", Eng. Optimiz., 37, 663-684 https://doi.org/10.1080/03052150500211895
- Lin, C.C. and Liu, I.W. (1989), "Optimal design based on optimality criterion for frame structures including buckling constraints", Comput. Struct., 31, 535-544 https://doi.org/10.1016/0045-7949(89)90330-1
- Manoharan, S. and Shanmuganathan, S. (1999), "A comparison of search mechanisms for structural optimization", Comput. Struct., 73, 363-372 https://doi.org/10.1016/S0045-7949(98)00287-9
- Paik, K., Jeong, J.H. and Kim, J.H. (2001), "Use of a harmony search for optimal design of coffer dam drainage pipes", J. Korean Soc. Civ. Eng., 21, 119-128
- Pantelidis, C.P. and Tzan, S.R. (2000), "Modified iterated annealing algorithm for structural synthesis", Adv. Eng. Softw., 31, 391-400 https://doi.org/10.1016/S0965-9978(00)00007-7
- Park, H.S. and Sung, C.W. (2002), "Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers", Comput. Struct., 80, 1305-1316 https://doi.org/10.1016/S0045-7949(02)00073-1
- Pezeshk, S., Camp, C.V. and Chen D. (2000), "Design of nonlinear framed structures using genetic optimization", J. Struct. Eng., ASCE, 126, 382-388 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng., ASCE, 118, 1233-1250 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Rao, A.R.M. and Arvind, N. (2007), "Optimal stacking sequence design of laminate composite structures using tabu search embedded simulated annealing", Struct. Eng. Mech., 25(2), 239-268 https://doi.org/10.12989/sem.2007.25.2.239
- Rozvany, G.I.N. and Zhou, M. (1991), "A note on truss design for stress and displacement constraints by optimality criteria methods", Struct. Optimiz., 3, 45-50 https://doi.org/10.1007/BF01743488
- Saka, M.P. and Hayalioglu, M.S. (1991), "Optimum design of geometrically nonlinear elastic-plastic steel frames", Comput. Struct., 38, 329-344 https://doi.org/10.1016/0045-7949(91)90110-8
- Shrestha, S.M. and Ghaboussi, J. (1998), "Evolution of optimum structural shapes using genetic algorithm", J. Struct. Eng., ASCE, 124, 1331-1338 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1331)
- Soegiarso, R. and Adeli, H. (1997), "Optimum load and resistance factor design of steel space-frame structures", J Struct Eng., ASCE, 123, 185-192
- Tabak, E.I. and Wright, P.M. (1981), "Optimality criteria method for building frames", J. Struct. Div., ASCE, 107, 1327-1342
- Topping, B.H.V., Khan. A.I. and de Barros Leite, J.P. (1993), "Topological design of truss structures using simulated annealing", Neural Networks and Combinatorial Optimization in Civil and Structural Engineering, Edinburgh, U.K., 151-165
- Uniform Building Code (1997), International Conference of Building Officials. Whittier, California
- van Laarhoven, P.J.M. and Aarts, E.H.L. (1987), Simulated Annealing: Theory and Applications. D. Riedel Publishing Company: Dordrecht
Cited by
- Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases vol.42, pp.5, 2010, https://doi.org/10.1007/s00158-010-0533-7
- Optimization and Parametric Modelling to Support Conceptual Structural Design vol.9, pp.2, 2011, https://doi.org/10.1260/1478-0771.9.2.151
- Effects of initial memory and identical harmony in global optimization using harmony search algorithm vol.218, pp.22, 2012, https://doi.org/10.1016/j.amc.2012.04.070
- Optimum design of axially symmetric cylindrical reinforced concrete walls vol.51, pp.3, 2014, https://doi.org/10.12989/sem.2014.51.3.361
- Damage detection under ambient vibration by harmony search algorithm vol.39, pp.10, 2012, https://doi.org/10.1016/j.eswa.2012.02.147
- Feedforward neural network training using intelligent global harmony search vol.3, pp.2, 2012, https://doi.org/10.1007/s12530-012-9054-5
- Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms vol.39, pp.10, 2012, https://doi.org/10.1016/j.eswa.2012.02.113
- An intelligent global harmony search approach to continuous optimization problems vol.232, 2014, https://doi.org/10.1016/j.amc.2014.01.086
- Global best harmony search algorithm with control parameters co-evolution based on PSO and its application to constrained optimal problems vol.219, pp.19, 2013, https://doi.org/10.1016/j.amc.2013.03.111
- Proposed Strategy for the Application of the Modified Harmony Search Algorithm to Code-Based Selection and Scaling of Ground Motions vol.28, pp.6, 2014, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000261
- Overview of Harmony Search algorithm and its applications in Civil Engineering vol.7, pp.1, 2014, https://doi.org/10.1007/s12065-013-0100-4
- Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions vol.147, 2015, https://doi.org/10.1016/j.compstruc.2014.10.003
- Multi-objective optimisation of retaining walls using hybrid adaptive gravitational search algorithm vol.31, pp.3, 2014, https://doi.org/10.1080/10286608.2013.853746
- Harmony Search Method for Multimodal Size, Shape, and Topology Optimization of Structural Frameworks vol.137, pp.11, 2011, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000378
- Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm vol.9, pp.6, 2009, https://doi.org/10.12989/scs.2009.9.6.535
- Multiobjective structural optimization of frameworks using enumerative topology vol.173, 2016, https://doi.org/10.1016/j.compstruc.2016.05.020
- Design-driven harmony search (DDHS) in steel frame optimization vol.59, 2014, https://doi.org/10.1016/j.engstruct.2013.12.003
- Improved harmony search algorithms for sizing optimization of truss structures vol.92-93, 2012, https://doi.org/10.1016/j.compstruc.2011.10.022
- A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames vol.15, pp.1, 2015, https://doi.org/10.1007/s13296-015-3006-4
- Truss optimization with dynamic constraints using UECBO vol.1, pp.2, 2016, https://doi.org/10.12989/acd.2016.1.2.119
- Sizing truss structures using teaching-learning-based optimization vol.119, 2013, https://doi.org/10.1016/j.compstruc.2012.12.011
- Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames vol.50, pp.3, 2014, https://doi.org/10.12989/sem.2014.50.3.323
- Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical Reinforced Concrete Walls vol.164, pp.1, 2015, https://doi.org/10.1007/s10957-014-0562-2
- Recognition-based online Kurdish character recognition using hidden Markov model and harmony search vol.20, pp.2, 2017, https://doi.org/10.1016/j.jestch.2016.11.016
- A self-adaptive global best harmony search algorithm for continuous optimization problems vol.216, pp.3, 2010, https://doi.org/10.1016/j.amc.2010.01.088
- Multi-objective optimization of foundation using global-local gravitational search algorithm vol.50, pp.3, 2014, https://doi.org/10.12989/sem.2014.50.3.257
- The Great Salmon Run Metaheuristic for Robust Shape and Size Design of Truss Structures with Dynamic Constraints vol.5, pp.2, 2014, https://doi.org/10.4018/ijamc.2014040104
- Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm vol.12, pp.6, 2012, https://doi.org/10.12989/scs.2012.12.6.505
- A Method to Improve the Seismic Performance of Steel Moment Resisting Frames Based on Eigenfrequency Optimization vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8385342
- Comparison of three novel hybrid metaheuristic algorithms for structural optimization problems vol.244, pp.None, 2008, https://doi.org/10.1016/j.compstruc.2020.106395