DOI QR코드

DOI QR Code

Problems with a popular thick plate element and the development of an improved thick plate element

  • Cheng, Y.M. (Department of Civil and Structural Engineering, Hong Kong Polytechnic University) ;
  • Law, C.W. (Housing Department, Hong Kong SAR Government)
  • 투고 : 2006.09.25
  • 심사 : 2008.03.25
  • 발행 : 2008.06.20

초록

Some unreasonable results from the use of a popular thick plate element are discovered from the analysis of a raft foundation and a pile cap in Hong Kong. To overcome the problems, the authors have developed a new shear deformable beam which can be extended to a general quadrilateral shear deformable plate. The behaviour of this new element under several interesting cases is investigated, and it is demonstrated that the new element possesses very high accuracy under different depth/span ratios, and the results from this new element are good even for a coarse mesh.

키워드

참고문헌

  1. Abdalla, J.A. and Ibrahim, A.K. (2007), "A geometrically nonlinear thick plate bending element based on mixed formulation and discrete collocation constraints", Struct. Eng. Mech., 26(6), 725-739 https://doi.org/10.12989/sem.2007.26.6.725
  2. Bathe, K.J. and Dvorkin, E.N. (1985), "A Four node plate bending element based on Mindlin/Ressiner plate theory and mixed interpolation", Int. J. Numer. Meth. Eng., 21, 367-383 https://doi.org/10.1002/nme.1620210213
  3. Bathe, K.J., Brezzi, F. and Cho, S.W. (1989), "The MITC7 and MITC9 plate elements", Comput. Struct., 32, 797-814 https://doi.org/10.1016/0045-7949(89)90365-9
  4. Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 28, 533-560 https://doi.org/10.1002/nme.1620280305
  5. Cen, S., Long, Y.Q., Yao, Z.H. and Chiew, S.P. (2006), "Application of the quadrilateral area co-ordinate method: A new element for Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 66, 1-45 https://doi.org/10.1002/nme.1533
  6. Chen, W.J. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", Int. J. Numer. Meth. Eng., 47, 605-627 https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
  7. Chen, W.J. and Cheung, Y.K. (2001), "Refined 9-Dof triangular Mindlin plate elements", Int. J. Numer. Meth. Eng., 51, 1259-1281 https://doi.org/10.1002/nme.196
  8. Computers and Structures Inc. (2002), Safe 7.0 User's and Verification Manual
  9. Computers and Structures Inc. (2002), Sap2000 8.0 User's Manual
  10. Gruttmann, F. and Wagner, W. (2004), "A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element", Int. J. Numer. Meth. Eng., 61, 2273-2295 https://doi.org/10.1002/nme.1148
  11. Hartmann, F. and Katz, C. (2004), Structural Analysis with Finite Elements, Springer
  12. Hughes, T.J.R. (1987), The Finite Element Method, Prentice Hall
  13. Ibrahimbegovic, A. (1992), "Plate quadrilateral finite elements with incompatible modes", Commun. Appl. Numer. Meth., 8, 497-504 https://doi.org/10.1002/cnm.1630080803
  14. Ibrahimbegovic, A. (1993), "Quadrilateral finite elements for analysis of thick and thin plates", Comput. Meth. Appl. Mech. Eng., 10, 195-209
  15. Jirousek, J., Wroblewski, A. and Szybinski, B. (1995), "A new 12 d.o.f. Quadrilateral element for analysis of thick and thin plates", Int. J. Numer. Meth. Eng., 38, 2619-2638 https://doi.org/10.1002/nme.1620381508
  16. Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-reissner plate theory and assumed shear strain fields - Part I: An extended DKT element for thick-plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1859-1883 https://doi.org/10.1002/nme.1620361106
  17. Lyly, M. and Stenbergy, R. (1998), "The stabilized MITC plate bending elements", Computational Mechanics, New Trends and Applications, CINME Press, Barcelona, Spain
  18. Onate, E., Zienkiewicz, O.C., Suarez, B. and Taylor, R.L. (1992), "A general methodology for deriving shear constrained Reissner-Mindlin plate element", Int. J. Numer. Meth. Eng., 33, 345-367 https://doi.org/10.1002/nme.1620330208
  19. Ozdemir, Y.I., Bekiroglu, S. and Ayvaz, Y. (2007), "Shear locking-free analysis of thick plates using Mindlin's theory", Struct. Eng. Mech., 27(3), 311-331 https://doi.org/10.12989/sem.2007.27.3.311
  20. Ozgan, K. and Daloglu Ayse, T. (2007), "Alternative plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86 https://doi.org/10.12989/sem.2007.26.1.069
  21. Reddy, J.N. (2000), Theory and Analysis of Elastic Plates, Taylor and Francis
  22. Sheikh, A.H. and Dey, P. (2001), "A new triangular element for the analysis of thick and thin plates", Commun. Numer. Meth. Eng., 17, 667-673 https://doi.org/10.1002/cnm.440
  23. Soh, A.K., Cen, S., Long ,Y.Q., Long, Z.F. (2001), "A new twelve DOF quadrilateral element for analysis of thick and thin plates", Euro. J. Mech. A/Solids, 20(2), 299-326 https://doi.org/10.1016/S0997-7538(00)01129-3
  24. Sze, K.Y. (2002), "Three-dimensional continuum finite element models for plate/shell analysis", Pro. Struct. Eng. Mater., 4, 400-407 https://doi.org/10.1002/pse.133
  25. Szilard, R. (2004), Theory and Applications of Plates Analysis of Plates, John Wiley
  26. Timoshenko, S. and Krieger, W. (1959), Theory of Plates and Shells, McGraw-Hill
  27. Reismann, H. (1988), Elastic Plates, Theory and Application, John Wiley
  28. Tessler, A. and Hughes, T.J.R. (1985), "A three-node Mindlin plate element with improved transverse shear", Comput. Meth. Appl. Mech. Eng.
  29. Urugal, A.C. (1999), Stress in Plates and Shells 2nd edition, McGraw-Hill
  30. Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates, Elsevier
  31. Wilson, E.L., Taylor, R.L., Doherty, W. and Ghaboussi, J. (1973), "Incompatible displacement models", Numer. Comput. Meth. Struct. Mech., Academic press
  32. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method 5th edition, 2, Butterworth-Heinemann

피인용 문헌

  1. A parametric study for thick plates resting on elastic foundation with variable soil depth vol.83, pp.4, 2013, https://doi.org/10.1007/s00419-012-0703-8