References
- Abdalla, J.A. and Ibrahim, A.K. (2007), "A geometrically nonlinear thick plate bending element based on mixed formulation and discrete collocation constraints", Struct. Eng. Mech., 26(6), 725-739 https://doi.org/10.12989/sem.2007.26.6.725
- Bathe, K.J. and Dvorkin, E.N. (1985), "A Four node plate bending element based on Mindlin/Ressiner plate theory and mixed interpolation", Int. J. Numer. Meth. Eng., 21, 367-383 https://doi.org/10.1002/nme.1620210213
- Bathe, K.J., Brezzi, F. and Cho, S.W. (1989), "The MITC7 and MITC9 plate elements", Comput. Struct., 32, 797-814 https://doi.org/10.1016/0045-7949(89)90365-9
- Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 28, 533-560 https://doi.org/10.1002/nme.1620280305
- Cen, S., Long, Y.Q., Yao, Z.H. and Chiew, S.P. (2006), "Application of the quadrilateral area co-ordinate method: A new element for Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 66, 1-45 https://doi.org/10.1002/nme.1533
- Chen, W.J. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", Int. J. Numer. Meth. Eng., 47, 605-627 https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
- Chen, W.J. and Cheung, Y.K. (2001), "Refined 9-Dof triangular Mindlin plate elements", Int. J. Numer. Meth. Eng., 51, 1259-1281 https://doi.org/10.1002/nme.196
- Computers and Structures Inc. (2002), Safe 7.0 User's and Verification Manual
- Computers and Structures Inc. (2002), Sap2000 8.0 User's Manual
- Gruttmann, F. and Wagner, W. (2004), "A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element", Int. J. Numer. Meth. Eng., 61, 2273-2295 https://doi.org/10.1002/nme.1148
- Hartmann, F. and Katz, C. (2004), Structural Analysis with Finite Elements, Springer
- Hughes, T.J.R. (1987), The Finite Element Method, Prentice Hall
- Ibrahimbegovic, A. (1992), "Plate quadrilateral finite elements with incompatible modes", Commun. Appl. Numer. Meth., 8, 497-504 https://doi.org/10.1002/cnm.1630080803
- Ibrahimbegovic, A. (1993), "Quadrilateral finite elements for analysis of thick and thin plates", Comput. Meth. Appl. Mech. Eng., 10, 195-209
- Jirousek, J., Wroblewski, A. and Szybinski, B. (1995), "A new 12 d.o.f. Quadrilateral element for analysis of thick and thin plates", Int. J. Numer. Meth. Eng., 38, 2619-2638 https://doi.org/10.1002/nme.1620381508
- Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-reissner plate theory and assumed shear strain fields - Part I: An extended DKT element for thick-plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1859-1883 https://doi.org/10.1002/nme.1620361106
- Lyly, M. and Stenbergy, R. (1998), "The stabilized MITC plate bending elements", Computational Mechanics, New Trends and Applications, CINME Press, Barcelona, Spain
- Onate, E., Zienkiewicz, O.C., Suarez, B. and Taylor, R.L. (1992), "A general methodology for deriving shear constrained Reissner-Mindlin plate element", Int. J. Numer. Meth. Eng., 33, 345-367 https://doi.org/10.1002/nme.1620330208
- Ozdemir, Y.I., Bekiroglu, S. and Ayvaz, Y. (2007), "Shear locking-free analysis of thick plates using Mindlin's theory", Struct. Eng. Mech., 27(3), 311-331 https://doi.org/10.12989/sem.2007.27.3.311
- Ozgan, K. and Daloglu Ayse, T. (2007), "Alternative plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86 https://doi.org/10.12989/sem.2007.26.1.069
- Reddy, J.N. (2000), Theory and Analysis of Elastic Plates, Taylor and Francis
- Sheikh, A.H. and Dey, P. (2001), "A new triangular element for the analysis of thick and thin plates", Commun. Numer. Meth. Eng., 17, 667-673 https://doi.org/10.1002/cnm.440
- Soh, A.K., Cen, S., Long ,Y.Q., Long, Z.F. (2001), "A new twelve DOF quadrilateral element for analysis of thick and thin plates", Euro. J. Mech. A/Solids, 20(2), 299-326 https://doi.org/10.1016/S0997-7538(00)01129-3
- Sze, K.Y. (2002), "Three-dimensional continuum finite element models for plate/shell analysis", Pro. Struct. Eng. Mater., 4, 400-407 https://doi.org/10.1002/pse.133
- Szilard, R. (2004), Theory and Applications of Plates Analysis of Plates, John Wiley
- Timoshenko, S. and Krieger, W. (1959), Theory of Plates and Shells, McGraw-Hill
- Reismann, H. (1988), Elastic Plates, Theory and Application, John Wiley
- Tessler, A. and Hughes, T.J.R. (1985), "A three-node Mindlin plate element with improved transverse shear", Comput. Meth. Appl. Mech. Eng.
- Urugal, A.C. (1999), Stress in Plates and Shells 2nd edition, McGraw-Hill
- Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates, Elsevier
- Wilson, E.L., Taylor, R.L., Doherty, W. and Ghaboussi, J. (1973), "Incompatible displacement models", Numer. Comput. Meth. Struct. Mech., Academic press
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method 5th edition, 2, Butterworth-Heinemann
Cited by
- A parametric study for thick plates resting on elastic foundation with variable soil depth vol.83, pp.4, 2013, https://doi.org/10.1007/s00419-012-0703-8