References
- Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis. Englewood Cliffs. NJ: Prentice-Hall
- Bert, C.W., Wang, Z. and Striz, A.G. (1994), "Static and free vibrational analysis of beams and plates by differential quadrature method", Acta Mech., 102, 11-24 https://doi.org/10.1007/BF01178514
- Chajes, A. (1974), Principles of Structural Stability Theory. Prentice-Hall: New Jersey
- Civalek, O. (1998), Finite Element Analysis of Plates and Shells. Elaz : F rat University, (in Turkish)
- Civalek, O. (2004), "Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186 https://doi.org/10.1016/j.engstruct.2003.09.005
- Civalek, O. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Pressure Vessels Piping, 83, 1-12 https://doi.org/10.1016/j.ijpvp.2005.10.005
- Civalek, O. (2007), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Model., 31, 606-624 https://doi.org/10.1016/j.apm.2005.11.023
- Civalek, O. (2007a), "Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach", J. Comput. Appl. Math., 205, 251-271 https://doi.org/10.1016/j.cam.2006.05.001
- Civalek, O. (2007b), "Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method", Int. J. Mech. Sci., 49, 752-765 https://doi.org/10.1016/j.ijmecsci.2006.10.002
- Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Eng., 24, 169-181 https://doi.org/10.1002/cnm.961
- Iyengar, N.G.R. (1988), Structural Stability of Columns and Plates, Chichester: Ellis Horwood
- Lim, C.W., Li, Z.R, Xiang, Y., Wei, G.W. and Wang, C.M. (2005), "On the missing modes when using the exact frequency relationship between Kirchhoff and Mindlin plates", Adv. Vib. Eng., 4, 221-248
- Lim, C.W., Li, Z.R. and Wei, G.W. (2005), "DSC-ritz method for high-mode frequency analysis of thick shallow shells", Int. J. Num. Meth. Eng., 62, 205-232 https://doi.org/10.1002/nme.1179
- Timoshenko, S.P. and Gere, J.M. (1959), Theory of Elastic Stability, McGraw-Hill: Tokyo
- Wang, X., Striz, A.G. and Bert, C.W. (1994), "Buckling and vibration analysis of skew plates by the differential quadrature method", AIAA J., 32(4), 886-889 https://doi.org/10.2514/3.12071
- Wei, G.W. (2001), "A new algorithm for solving some mechanical problems", Comput. Meth. Appl. Mech. Eng., 190, 2017-2030 https://doi.org/10.1016/S0045-7825(00)00219-X
- Wei, G.W. (2001a), "Vibration analysis by discrete singular convolution", J. Sound Vib., 244, 535-553 https://doi.org/10.1006/jsvi.2000.3507
- Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm", Int. J. Numer. Meth. Eng., 55, 913-946 https://doi.org/10.1002/nme.526
- Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002a), "A novel approach for the analysis of high-frequency vibrations", J. Sound Vib., 257, 207-246 https://doi.org/10.1006/jsvi.2002.5055
- Zhao, S., Wei, G.W. and Xiang, Y. (2005), "DSC analysis of free-edged beamsmby an iteratively matched boundary method", J. Sound Vib., 284, 487-493 https://doi.org/10.1016/j.jsv.2004.08.037
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), "Discrete singular convolution for the prediction of high frequency vibration of plates", Int. J. Solids Struct., 39, 65-88 https://doi.org/10.1016/S0020-7683(01)00183-4
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002a), "Plate vibration under irregular internal supports", Int. J. Solids Struct., 39, 1361-1383 https://doi.org/10.1016/S0020-7683(01)00241-4
- Zhao, Y.B. and Wei, G.W. (2002), "DSC Analysis rectangular plates with nonuniform boundary conditions", J. Sound Vib., 255, 203-205 https://doi.org/10.1006/jsvi.2001.4150
Cited by
- An enhanced exponential matrix approach aimed at the stability of piecewise beams on elastic foundation vol.285, 2016, https://doi.org/10.1016/j.amc.2016.03.020
- Buckling analysis of a beam–column using multilayer perceptron neural network technique vol.350, pp.10, 2013, https://doi.org/10.1016/j.jfranklin.2013.07.016
- Buckling and post-buckling analysis of extensible beam–columns by using the differential quadrature method vol.62, pp.12, 2011, https://doi.org/10.1016/j.camwa.2011.10.029
- Stability and non-stationary vibration analysis of beams subjected to periodic axial forces using discrete singular convolution vol.44, pp.4, 2012, https://doi.org/10.12989/sem.2012.44.4.487
- New analytic buckling solutions of rectangular thin plates with all edges free vol.144, pp.None, 2018, https://doi.org/10.1016/j.ijmecsci.2018.05.041
- A New Geometrically Exact Model for Buckling and Postbuckling Statics and Dynamics of Beams vol.86, pp.7, 2008, https://doi.org/10.1115/1.4043144
- Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method vol.72, pp.4, 2008, https://doi.org/10.12989/sem.2019.72.4.491
- New Analytic Shear Buckling Solution of Clamped Rectangular Plates by a Two-Dimensional Generalized Finite Integral Transform Method vol.20, pp.2, 2008, https://doi.org/10.1142/s0219455420710029
- A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2008, https://doi.org/10.1007/s11831-019-09365-5