DOI QR코드

DOI QR Code

Geometry-dependent MITC method for a 2-node iso-beam element

  • Received : 2007.04.24
  • Accepted : 2008.03.04
  • Published : 2008.05.30

Abstract

In this paper, we present an idea of the geometry-dependent MITC method. The simple concept is exemplified to improve a 2-node iso-beam (isoparametric beam) finite element of varying section. We first study the behavior of a standard 2-node iso-beam finite element of prismatic section, which has been widely used with reduced integration (or the equivalent MITC method) in order to avoid shear locking. Based on analytical studies on cantilever beams of varying section, we propose the axial strain correction (ASC) scheme and the geometry-dependent tying (GDT) scheme for the 2-node iso-beam element. We numerically analyze varying section beam problems and present the improved performance by using both ASC and GDT schemes.

Keywords

References

  1. Baker, G. (1996), "Exact deflections in nonprismatic members", Comput. truct., 61, 515-528 https://doi.org/10.1016/0045-7949(96)00046-6
  2. Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall: New Jersey
  3. Bathe, K.J. and Bolourchi, S. (1979), "Large displacement analysis of three-dimensional beam structures", Int. J. Numer. Meth. Eng., 14, 961-986 https://doi.org/10.1002/nme.1620140703
  4. Bucalem, M. and Bathe, K.J. (1993), "Higher-order MITC general shell elements", Int. J. Numer. Meth. Eng., 36, 3729-3754 https://doi.org/10.1002/nme.1620362109
  5. Choi, C.K. and Paik, J.G. (1994), "An efficient four node degenerated shell element based on the assumed covariant strain", Struct. Eng. Mech., 2(1), 17-34 https://doi.org/10.12989/sem.1994.2.1.017
  6. Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "Defect-free 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8(2), 207-231 https://doi.org/10.12989/sem.1999.8.2.207
  7. Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general nonlinear analysis", Eng. Comput., 1, 77-88 https://doi.org/10.1108/eb023562
  8. Hong, H.S., Kim, K.H. and Choi, C.K. (2004), "Assumed strain finite strip method using the non-periodic Bspline", Struct. Eng. Mech., 18(5), 671-690 https://doi.org/10.12989/sem.2004.18.5.671
  9. Lee, P.S. and Bathe, K.J. (2002), "On the asymptotic behavior of shell structures and the evaluation in finite element solutions", Comput. Struct., 80, 235-255 https://doi.org/10.1016/S0045-7949(02)00009-3
  10. Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962 https://doi.org/10.1016/j.compstruc.2004.02.004
  11. Lee, P.S. and McClure, G. (2006), "A general three-dimensional L-section beam finite element for elastoplastic large deformation analysis", Comput. Struct., 84, 215-229 https://doi.org/10.1016/j.compstruc.2005.09.013

Cited by

  1. Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors vol.281, 2014, https://doi.org/10.1016/j.cma.2014.07.023
  2. Extension of MITC to higher-order beam models and shear locking analysis for compact, thin-walled, and composite structures vol.112, pp.13, 2017, https://doi.org/10.1002/nme.5588
  3. A new block assembly method for shipbuilding at sea vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.999
  4. Evaluation of the accuracy of classical beam FE models via locking-free hierarchically refined elements vol.100, 2015, https://doi.org/10.1016/j.ijmecsci.2015.06.021
  5. Modeling the warping displacements for discontinuously varying arbitrary cross-section beams vol.131, 2014, https://doi.org/10.1016/j.compstruc.2013.10.013
  6. A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities vol.43, pp.4, 2008, https://doi.org/10.12989/sem.2012.43.4.411
  7. Benchmark tests of MITC triangular shell elements vol.68, pp.1, 2008, https://doi.org/10.12989/sem.2018.68.1.017
  8. New higher-order triangular shell finite elements based on the partition of unity vol.73, pp.1, 2008, https://doi.org/10.12989/sem.2020.73.1.001
  9. An implementation for 2nd-order M-N coupling and geometric stiffness adaptation in tapered beam-column elements vol.225, pp.None, 2020, https://doi.org/10.1016/j.engstruct.2020.111241
  10. An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams vol.28, pp.None, 2008, https://doi.org/10.1016/j.istruc.2020.08.038