References
- Baker, G. (1996), "Exact deflections in nonprismatic members", Comput. truct., 61, 515-528 https://doi.org/10.1016/0045-7949(96)00046-6
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall: New Jersey
- Bathe, K.J. and Bolourchi, S. (1979), "Large displacement analysis of three-dimensional beam structures", Int. J. Numer. Meth. Eng., 14, 961-986 https://doi.org/10.1002/nme.1620140703
- Bucalem, M. and Bathe, K.J. (1993), "Higher-order MITC general shell elements", Int. J. Numer. Meth. Eng., 36, 3729-3754 https://doi.org/10.1002/nme.1620362109
- Choi, C.K. and Paik, J.G. (1994), "An efficient four node degenerated shell element based on the assumed covariant strain", Struct. Eng. Mech., 2(1), 17-34 https://doi.org/10.12989/sem.1994.2.1.017
- Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "Defect-free 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8(2), 207-231 https://doi.org/10.12989/sem.1999.8.2.207
- Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general nonlinear analysis", Eng. Comput., 1, 77-88 https://doi.org/10.1108/eb023562
- Hong, H.S., Kim, K.H. and Choi, C.K. (2004), "Assumed strain finite strip method using the non-periodic Bspline", Struct. Eng. Mech., 18(5), 671-690 https://doi.org/10.12989/sem.2004.18.5.671
- Lee, P.S. and Bathe, K.J. (2002), "On the asymptotic behavior of shell structures and the evaluation in finite element solutions", Comput. Struct., 80, 235-255 https://doi.org/10.1016/S0045-7949(02)00009-3
- Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962 https://doi.org/10.1016/j.compstruc.2004.02.004
- Lee, P.S. and McClure, G. (2006), "A general three-dimensional L-section beam finite element for elastoplastic large deformation analysis", Comput. Struct., 84, 215-229 https://doi.org/10.1016/j.compstruc.2005.09.013
Cited by
- Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors vol.281, 2014, https://doi.org/10.1016/j.cma.2014.07.023
- Extension of MITC to higher-order beam models and shear locking analysis for compact, thin-walled, and composite structures vol.112, pp.13, 2017, https://doi.org/10.1002/nme.5588
- A new block assembly method for shipbuilding at sea vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.999
- Evaluation of the accuracy of classical beam FE models via locking-free hierarchically refined elements vol.100, 2015, https://doi.org/10.1016/j.ijmecsci.2015.06.021
- Modeling the warping displacements for discontinuously varying arbitrary cross-section beams vol.131, 2014, https://doi.org/10.1016/j.compstruc.2013.10.013
- A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities vol.43, pp.4, 2008, https://doi.org/10.12989/sem.2012.43.4.411
- Benchmark tests of MITC triangular shell elements vol.68, pp.1, 2008, https://doi.org/10.12989/sem.2018.68.1.017
- New higher-order triangular shell finite elements based on the partition of unity vol.73, pp.1, 2008, https://doi.org/10.12989/sem.2020.73.1.001
- An implementation for 2nd-order M-N coupling and geometric stiffness adaptation in tapered beam-column elements vol.225, pp.None, 2020, https://doi.org/10.1016/j.engstruct.2020.111241
- An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams vol.28, pp.None, 2008, https://doi.org/10.1016/j.istruc.2020.08.038