DOI QR코드

DOI QR Code

Computational modeling of coupled fluid-structure systems with applications

  • Kerboua, Y. (Mechanical Engineering Department, Ecole Polytechnique de Montreal) ;
  • Lakis, A.A. (Mechanical Engineering Department, Ecole Polytechnique de Montreal) ;
  • Thomas, M. (Mechanical Engineering Department, Ecole de Technologie Superieure) ;
  • Marcouiller, L. (Institut de Recherche d'Hydro Quebec)
  • Received : 2007.04.09
  • Accepted : 2008.02.01
  • Published : 2008.05.10

Abstract

This paper outlines the development of a computational model in order to analyze the dynamic behaviour of coupled fluid-structure systems such as a) liquid containers, b) a set of parallel or radial plates. In this work a hybrid fluid-solid element is developed, capable of simulating both membrane and bending effects of the plate. The structural mass and stiffness matrices are determined using exact integration of governing equations which are derived using a combination of classical plate theory and a finite element approach. The Bernoulli equation and velocity potential function are used to describe the liquid pressure applied on the solid-fluid element. An impermeability condition assures a permanent contact at the fluid-structure interface. Applications of this model are presented for both parallel and radial plates as well as fluid-filled rectangular reservoir. The effect of physical parameters on the dynamic behaviour of a coupled fluid-structure system is investigated. The results obtained using the presented approach for dynamic characteristics such as natural frequency are in agreement to those calculated using other theories and experiments.

Keywords

References

  1. Amabili, M. and Dalpiaz, G. (1995), "Breathing vibrations of a horizontal circular cylindrical tank shell, partially filled with liquid", J. Vib. Acoust., 117(2), 187-191 https://doi.org/10.1115/1.2873885
  2. Amabili, M. and Kwak, M.K. (1999), "Vibration of circular plates on a free fluid surface: Effect of surface waves", J. Sound Vib., 226(3), 407-424 https://doi.org/10.1006/jsvi.1998.2304
  3. Bauer, H.F. (1981), "Hydroelastic vibrations in a rectangular container", Int. J. Solids Struct., 17(7), 639-652 https://doi.org/10.1016/0020-7683(81)90001-9
  4. Berry, J.G. and Reissner, E. (1958), "The effect of an internal compressible fluid column on the breathing vibrations of a thin pressurized cylindrical shell", J. Aerospace Sci., 25, 288-294 https://doi.org/10.2514/8.7643
  5. Charbonneau, E. and Lakis, A.A. (2001), "Semi-analytical shape functions in the finite element analysis of rectangular plates", J. Sound Vib., 242(3), 427-443 https://doi.org/10.1006/jsvi.2000.3373
  6. Cheung, Y.K. and Zhou, D. (2000), "Coupled vibratory characteristics of a rectangular container bottom plate", J. Fluids Struct., 14(3), 339-357 https://doi.org/10.1006/jfls.1999.0272
  7. Cheung, Y.K. and Zhou, D. (2002), "Hydroelastic vibration of a circular container bottom plate using the Galerkin method", J. Fluids Struct., 16(4), 561-580 https://doi.org/10.1006/jfls.2001.0430
  8. Ding, Z. and Weiqing, L. (2007), "Hydroelastic vibrations of flexible rectangular tanks partially filled with liquid", Int. J. Numer. Meth. Eng., 71, 149-174 https://doi.org/10.1002/nme.1921
  9. Fu, Y. and Price, W.G. (1987), "Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid", J. Sound Vib., 118(3), 495-513 https://doi.org/10.1016/0022-460X(87)90366-X
  10. Guo, C.Q. and Paidoussis, M.P. (2000), "Analysis of hydroelastic instabilities of rectangular parallel-plate assemblies", J. Press. Vess. -T. ASME., 122(4), 502-508 https://doi.org/10.1115/1.1286019
  11. Jain, R.K. (1974), "Vibration of fluid-filled, orthotropic cylindrical shells", J. Sound Vib., 37(3), 379-388 https://doi.org/10.1016/S0022-460X(74)80253-1
  12. Jeong, K.H. (2003), "Free vibration of two identical circular plates coupled with bounded fluid", J. Sound Vib., 260(4), 653-670 https://doi.org/10.1016/S0022-460X(02)01012-X
  13. Jeong, K.H., Yoo, G.H.Y. and Lee, S.C. (2004), "Hydroelastic vibration of two identical rectangular plates", J. Sound Vib., 272(3-5), 539-555 https://doi.org/10.1016/S0022-460X(03)00383-3
  14. Jeong, K.H., Kim, T.W., Choi, S. and Park, K.B. (1998), "Free vibration analysis of two circular disks coupled with fluid", Proceeding of San Diego, CA, USA
  15. Kerboua, Y., Lakis, A.A., Thomas, M. and Marcouiller, L. (2005), "Comportement dynamique des plaques rectangulaires submergées", Ecole polytechnique de Montreal, EPM-RT-2005-05
  16. Kim, M.C. and Lee, S.S. (1997), "Hydroelastic analysis of rectangular tank", Proceeding of The aerospace corporation El Segundo, California 90245
  17. Kwak, M.K. (1994), "Vibration of circular membranes in contact with water", J. Sound Vib., 178(5), 688-690 https://doi.org/10.1006/jsvi.1994.1516
  18. Kwak, M.K. (1997), "Hydroelastic vibration of circular plates", J. Sound Vib., 201(3), 293-303 https://doi.org/10.1006/jsvi.1996.0775
  19. Kwak, M.K. and Han, S.B. (2000), "Effect of fluid depth on the hydroelastic vibration of free-edge circular plate", J. Sound Vib., 230(1), 171-185 https://doi.org/10.1006/jsvi.1999.2608
  20. Lakis, A.A. and Paidoussis, M.P. (1971), "Free vibration of cylindrical shells partially filled with liquid", J. Sound Vib., 19(1), 1-15 https://doi.org/10.1016/0022-460X(71)90417-2
  21. Lamb, H. (1920), "On the Vibrations of an Elastic Plate in Contact with Water", Proc. Royal Society of London., 98(690), 205-216
  22. Lamb, H. (1945), "Hydrodynamics", Sixsth edition, Dover Publication, New York
  23. Lindholm, U.S., Kana, D.D. and Abramson, H.N. (1962), "Breathing vibrations of circular cylindrical shell with internal liquid", J. Aerospace Sci., 29(9), 1052-1059 https://doi.org/10.2514/8.9693
  24. Lindholm, U.S., Kana, D.D., Chu, W.H. and Abramson, H.N. (1965), "Elastic vibration characteristics of cantilever plates in water", J. Ship Res., 9(1), 11-22
  25. Rayleigh, L. (1945), Theory of Sound, Second Edition Dover New York
  26. Sanders, J.L. (1959), An Improved First Approximation Theory for Thin Shells NASA, TR-R24
  27. Santanu, M. and Sinhamahapatra, K.P. (2005), "Coupled slosh dynamics of liquid filled containers using pressure based finite element method", Proceeding of Exploring Innovation in Education and Research, Taiwan
  28. Selmane, A. and Lakis, A.A. (1997), "Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid", J. Fluid. Struct., 11(1), 111-134 https://doi.org/10.1006/jfls.1996.0069

Cited by

  1. Study on modal characteristics of perforated shell using effective Young's modulus vol.241, pp.6, 2011, https://doi.org/10.1016/j.nucengdes.2011.02.007
  2. Modal characteristics of partially perforated rectangular plate with triangular penetration pattern vol.55, pp.3, 2015, https://doi.org/10.12989/sem.2015.55.3.583
  3. Effects of residual stress and fluid loading on vibrations of a micro-diaphragm on a free fluid surface vol.11, pp.2, 2008, https://doi.org/10.1063/5.0035259